Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas

Xiang Run Huang, Ye Zhou, Robert W. Knighton, Wei Kong, William J. Feuer

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


PURPOSE. Retinal nerve fiber layer (RNFL) reflectance is often used in optical methods for RNFL assessment in clinical diagnosis of glaucoma, yet little is known about the reflectance property of the RNFL under the development of glaucoma. This study measured the changes in RNFL reflectance spectra that occurred in retinal nerve fiber bundles with different degrees of glaucomatous damage. METHODS. A rat model of glaucoma with laser photocoagulation of trabecular meshwork was used. Reflectance of the RNFL in an isolated retina was measured at wavelengths of 400-830 nm. Cytostructural distribution of the bundles measured optically was evaluated by confocal imaging of immunohistochemistry staining of cytoskeletal components, F-actin, microtubules, and neurofilaments. RNFL reflectance spectra were studied in bundles with normal-looking appearance, early Factin distortion, and apparent damage of all cytoskeletal components. Changes of RNFL reflectance spectra were studied at different radii (0.22, 0.33, and 0.44 mm) from the optic nerve head (ONH). RESULTS. Bundles in 30 control retinas and 41 glaucomatous retinas were examined. In normal retinas, reflectance spectra were similar along the same bundles. In glaucomatous retinas, reflectance spectra changed along bundles with the spectra becoming flatter as bundle areas approached the ONH. CONCLUSIONS. Elevation of intraocular pressure (IOP) causes nonuniform changes in RNFL reflectance across wavelengths. Changes of reflectance spectra occur early in bundles near the ONH and prior to apparent cytoskeletal distortion. Using the ratio of RNFL reflectance measured at different wavelengths can provide early and sensitive detection of glaucomatous damage.

Original languageEnglish (US)
Pages (from-to)5869-5876
Number of pages8
JournalInvestigative Ophthalmology and Visual Science
Issue number9
StatePublished - Aug 2012

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas'. Together they form a unique fingerprint.

Cite this