Voltage and Ca2+ activation of single large-conductance Ca2+- activated K+ channels described by a two-tiered allosteric gating mechanism

Brad S. Rothberg, Karl Magleby

Research output: Contribution to journalArticle

122 Citations (Scopus)

Abstract

The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (P(o)) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in P(o); effective gating charge, q(eff), of 2.3 ± 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 μM. Increasing Ca2+(i) from 0.03 to 1,024 μM shifted the voltage for half maximal activation (V1/2) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) ≤ 0.03 μM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same P(o), were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of P(o) arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (~0 through 1,024 μM), voltage (+80 to -80 mV), and P(o) (10-4 to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.

Original languageEnglish
Pages (from-to)75-99
Number of pages25
JournalJournal of General Physiology
Volume116
Issue number1
DOIs
StatePublished - Jul 1 2000

Fingerprint

Calcium-Activated Potassium Channels
Large-Conductance Calcium-Activated Potassium Channels
Skeletal Muscle
Binding Sites

Keywords

  • Eigen
  • K(Ca) channel
  • Large-conductance Ca-activated K channel
  • Markov
  • Monod- Wyman-Changeux

ASJC Scopus subject areas

  • Physiology

Cite this

@article{2f497023a9904f3e963fbfb32e6ec540,
title = "Voltage and Ca2+ activation of single large-conductance Ca2+- activated K+ channels described by a two-tiered allosteric gating mechanism",
abstract = "The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (P(o)) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in P(o); effective gating charge, q(eff), of 2.3 ± 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 μM. Increasing Ca2+(i) from 0.03 to 1,024 μM shifted the voltage for half maximal activation (V1/2) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) ≤ 0.03 μM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same P(o), were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of P(o) arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (~0 through 1,024 μM), voltage (+80 to -80 mV), and P(o) (10-4 to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.",
keywords = "Eigen, K(Ca) channel, Large-conductance Ca-activated K channel, Markov, Monod- Wyman-Changeux",
author = "Rothberg, {Brad S.} and Karl Magleby",
year = "2000",
month = "7",
day = "1",
doi = "10.1085/jgp.116.1.75",
language = "English",
volume = "116",
pages = "75--99",
journal = "Journal of General Physiology",
issn = "0022-1295",
publisher = "Rockefeller University Press",
number = "1",

}

TY - JOUR

T1 - Voltage and Ca2+ activation of single large-conductance Ca2+- activated K+ channels described by a two-tiered allosteric gating mechanism

AU - Rothberg, Brad S.

AU - Magleby, Karl

PY - 2000/7/1

Y1 - 2000/7/1

N2 - The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (P(o)) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in P(o); effective gating charge, q(eff), of 2.3 ± 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 μM. Increasing Ca2+(i) from 0.03 to 1,024 μM shifted the voltage for half maximal activation (V1/2) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) ≤ 0.03 μM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same P(o), were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of P(o) arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (~0 through 1,024 μM), voltage (+80 to -80 mV), and P(o) (10-4 to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.

AB - The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (P(o)) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in P(o); effective gating charge, q(eff), of 2.3 ± 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 μM. Increasing Ca2+(i) from 0.03 to 1,024 μM shifted the voltage for half maximal activation (V1/2) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) ≤ 0.03 μM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same P(o), were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of P(o) arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (~0 through 1,024 μM), voltage (+80 to -80 mV), and P(o) (10-4 to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel.

KW - Eigen

KW - K(Ca) channel

KW - Large-conductance Ca-activated K channel

KW - Markov

KW - Monod- Wyman-Changeux

UR - http://www.scopus.com/inward/record.url?scp=0033623996&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033623996&partnerID=8YFLogxK

U2 - 10.1085/jgp.116.1.75

DO - 10.1085/jgp.116.1.75

M3 - Article

C2 - 10871641

AN - SCOPUS:0033623996

VL - 116

SP - 75

EP - 99

JO - Journal of General Physiology

JF - Journal of General Physiology

SN - 0022-1295

IS - 1

ER -