TY - JOUR
T1 - Virtual field campaigns on deep tropical convection in climate models
AU - Mapes, Brian E.
AU - Bacmeister, Julio
AU - Khairoutdinov, Marat
AU - Hannay, Cecile
AU - Zhao, Ming
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/1/15
Y1 - 2009/1/15
N2 - High-resolution time-height data over warm tropical oceans are examined, from three global atmosphere models [GFDL's Atmosphere Model 2 (AM2), NCAR's Community Atmosphere Model, version 3 (CAM3), and a NASA Global Modeling and Assimilation Office (GMAO) model], field campaign observations, and observation-driven cloud model outputs. The character of rain events is shown in data samples and summarized in lagged regressions versus surface rain rate. The CAM3 humidity and cloud exhibit little vertical coherence among three distinct layers, and its rain events have a short characteristic time, reflecting the convection scheme's penetrative nature and its closure's concentrated sensitivity to a thin boundary layer source level. In contrast, AM2 rain variations have much longer time scales as convection scheme plumes whose entrainment gives them tops below 500 hPa interact with humidity variations in that layer. Plumes detraining at model levels above 500 hPa are restricted by cloud work function thresholds, and upper-tropospheric humidity and cloud layers fed by these are detached from the lower levels and are somewhat sporadic.With these discrete entrainment rates and instability thresholds, AM2 also produces some synthetic-looking noise (sharp features in height and time) on top of its slow rain variations. A distinctive feature of the NASA model is a separate anvil scheme, distinct from the main large-scale cloud scheme, fed by relaxed Arakawa-Schubert (RAS) plume ensemble convection (a different implementation than in AM2). Its variability is rich and vertically coherent, and involves a very strong vertical dipole component to its tropospheric heating variations, of both signs (limited-depth convective heating and top-heavy heating in strong deep events with significant nonconvective rain). Grid-scale saturation events occur in all three models, often without nonconvective surface rain, causing relatively rare episodes of large negative top-of-atmosphere cloud forcing. Overall, cloud forcing regressions show a mild net positive forcing by rain-correlated clouds in CAM3 and mild net cooling in the other models, as the residual of large canceling shortwave and longwave contributions.
AB - High-resolution time-height data over warm tropical oceans are examined, from three global atmosphere models [GFDL's Atmosphere Model 2 (AM2), NCAR's Community Atmosphere Model, version 3 (CAM3), and a NASA Global Modeling and Assimilation Office (GMAO) model], field campaign observations, and observation-driven cloud model outputs. The character of rain events is shown in data samples and summarized in lagged regressions versus surface rain rate. The CAM3 humidity and cloud exhibit little vertical coherence among three distinct layers, and its rain events have a short characteristic time, reflecting the convection scheme's penetrative nature and its closure's concentrated sensitivity to a thin boundary layer source level. In contrast, AM2 rain variations have much longer time scales as convection scheme plumes whose entrainment gives them tops below 500 hPa interact with humidity variations in that layer. Plumes detraining at model levels above 500 hPa are restricted by cloud work function thresholds, and upper-tropospheric humidity and cloud layers fed by these are detached from the lower levels and are somewhat sporadic.With these discrete entrainment rates and instability thresholds, AM2 also produces some synthetic-looking noise (sharp features in height and time) on top of its slow rain variations. A distinctive feature of the NASA model is a separate anvil scheme, distinct from the main large-scale cloud scheme, fed by relaxed Arakawa-Schubert (RAS) plume ensemble convection (a different implementation than in AM2). Its variability is rich and vertically coherent, and involves a very strong vertical dipole component to its tropospheric heating variations, of both signs (limited-depth convective heating and top-heavy heating in strong deep events with significant nonconvective rain). Grid-scale saturation events occur in all three models, often without nonconvective surface rain, causing relatively rare episodes of large negative top-of-atmosphere cloud forcing. Overall, cloud forcing regressions show a mild net positive forcing by rain-correlated clouds in CAM3 and mild net cooling in the other models, as the residual of large canceling shortwave and longwave contributions.
UR - http://www.scopus.com/inward/record.url?scp=64049093073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64049093073&partnerID=8YFLogxK
U2 - 10.1175/2008JCLI2203.1
DO - 10.1175/2008JCLI2203.1
M3 - Article
AN - SCOPUS:64049093073
VL - 22
SP - 244
EP - 257
JO - Journal of Climate
JF - Journal of Climate
SN - 0894-8755
IS - 2
ER -