Versatile optical coherence tomography for imaging the human eye

Aizhu Tao, Yilei Shao, Jianguang Zhong, Hong Jiang, Meixiao Shen, Jianhua Wang

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

We demonstrated the feasibility of a CMOS-based spectral domain OCT (SD-OCT) for versatile ophthalmic applications of imaging the corneal epithelium, limbus, ocular surface, contact lens, crystalline lens, retina, and full eye in vivo. The system was based on a single spectrometer and an alternating reference arm with four mirrors. A galvanometer scanner was used to switch the reference beam among the four mirrors, depending on the imaging application. An axial resolution of 7.7 μm in air, a scan depth of up to 37.7 mm in air, and a scan speed of up to 70,000 A-lines per second were achieved. The approach has the capability to provide highresolution imaging of the corneal epithelium, contact lens, ocular surface, and tear meniscus. Using two reference mirrors, the zero delay lines were alternatively placed on the front cornea or on the back lens. The entire ocular anterior segment was imaged by registering and overlapping the two images. The full eye through the pupil was measured when the reference arm was switched among the four reference mirrors. After mounting a 60 D lens in the sample arm, this SD-OCT was used to image the retina, including the macula and optical nerve head. This system demonstrates versatility and simplicity for multi-purpose ophthalmic applications.

Original languageEnglish (US)
Pages (from-to)1031-1044
Number of pages14
JournalBiomedical Optics Express
Volume4
Issue number7
DOIs
StatePublished - 2013

ASJC Scopus subject areas

  • Biotechnology
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Versatile optical coherence tomography for imaging the human eye'. Together they form a unique fingerprint.

Cite this