Abstract
By validation of atmospheric correction, we mean quantification of the uncertainty expected to be associated with the retrieval of the water-leaving radiance from the measurement of the total radiance exiting the ocean-atmosphere system. This uncertainty includes that associated with the measurement or estimation of auxiliary data required for the retrieval process, for example, surface wind speed, surface atmospheric pressure, and total ozone concentration. For a definitive validation this quantification should be carried out over the full range of atmospheric types expected to be encountered. However, funding constraints require that the individual validation campaigns must be planned to address the individual components of the atmospheric correction algorithm believed to represent the greatest potential sources of error. In this paper we develop a strategy for validation of atmospheric correction over the oceans that is focused on EOS/MODIS. We also provide a description of the instrumentation and methods to be used in the implementation of the plan.
Original language | English (US) |
---|---|
Pages (from-to) | 17209-17217 |
Number of pages | 9 |
Journal | Journal of Geophysical Research Atmospheres |
Volume | 102 |
Issue number | 14 |
DOIs | |
State | Published - Jul 27 1997 |
ASJC Scopus subject areas
- Geophysics
- Forestry
- Oceanography
- Aquatic Science
- Ecology
- Water Science and Technology
- Soil Science
- Geochemistry and Petrology
- Earth-Surface Processes
- Atmospheric Science
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Palaeontology