Unsaturated platinum-rhenium cluster complexes. synthesis, structures and reactivity

Richard D. Adams, Burjor Captain, Mark D. Smith, Chad Beddie, Michael B. Hall

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Two new compounds PtRe3(CO)12(PBut 3)(μ-H)3, 9, and PtRe2(CO) 9(PBut3)(μ-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re 3(CO)12(μ-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt 2Re2(CO)7(PBut3) 2(μ-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBu t3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBu t3)2(μ-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97°C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt 2Re2(CO)8(PBut3) 2(μ-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO) 6(PBut3)3(μ-H)2, 14, and Pt3Re2(CO)6(PBut 3)3(μ-H)4, 15, respectively. Density functional calculations confirm the hydride positions in the lowest energy structural isomers of 11 and 12 and suggest a mechanism for H2 addition to 11 that occurs on the Pt atom with the lower coordination number.

Original languageEnglish
Pages (from-to)5981-5991
Number of pages11
JournalJournal of the American Chemical Society
Volume129
Issue number18
DOIs
StatePublished - May 9 2007
Externally publishedYes

Fingerprint

Rhenium
Platinum
Ligands
Metals
Atoms
Temperature
Hydrides
Hydrogen
Butterflies
Coordination Complexes
Hexanes
Hexane
Isotopes
Isomers
Heating
Density functional theory
Ion exchange
Nuclear magnetic resonance
Irradiation

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Unsaturated platinum-rhenium cluster complexes. synthesis, structures and reactivity. / Adams, Richard D.; Captain, Burjor; Smith, Mark D.; Beddie, Chad; Hall, Michael B.

In: Journal of the American Chemical Society, Vol. 129, No. 18, 09.05.2007, p. 5981-5991.

Research output: Contribution to journalArticle

Adams, Richard D. ; Captain, Burjor ; Smith, Mark D. ; Beddie, Chad ; Hall, Michael B. / Unsaturated platinum-rhenium cluster complexes. synthesis, structures and reactivity. In: Journal of the American Chemical Society. 2007 ; Vol. 129, No. 18. pp. 5981-5991.
@article{2a5f983c56c8458782e821c62074160b,
title = "Unsaturated platinum-rhenium cluster complexes. synthesis, structures and reactivity",
abstract = "Two new compounds PtRe3(CO)12(PBut 3)(μ-H)3, 9, and PtRe2(CO) 9(PBut3)(μ-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re 3(CO)12(μ-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt 2Re2(CO)7(PBut3) 2(μ-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBu t3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBu t3)2(μ-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97°C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt 2Re2(CO)8(PBut3) 2(μ-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO) 6(PBut3)3(μ-H)2, 14, and Pt3Re2(CO)6(PBut 3)3(μ-H)4, 15, respectively. Density functional calculations confirm the hydride positions in the lowest energy structural isomers of 11 and 12 and suggest a mechanism for H2 addition to 11 that occurs on the Pt atom with the lower coordination number.",
author = "Adams, {Richard D.} and Burjor Captain and Smith, {Mark D.} and Chad Beddie and Hall, {Michael B.}",
year = "2007",
month = "5",
day = "9",
doi = "10.1021/ja070773o",
language = "English",
volume = "129",
pages = "5981--5991",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "18",

}

TY - JOUR

T1 - Unsaturated platinum-rhenium cluster complexes. synthesis, structures and reactivity

AU - Adams, Richard D.

AU - Captain, Burjor

AU - Smith, Mark D.

AU - Beddie, Chad

AU - Hall, Michael B.

PY - 2007/5/9

Y1 - 2007/5/9

N2 - Two new compounds PtRe3(CO)12(PBut 3)(μ-H)3, 9, and PtRe2(CO) 9(PBut3)(μ-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re 3(CO)12(μ-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt 2Re2(CO)7(PBut3) 2(μ-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBu t3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBu t3)2(μ-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97°C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt 2Re2(CO)8(PBut3) 2(μ-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO) 6(PBut3)3(μ-H)2, 14, and Pt3Re2(CO)6(PBut 3)3(μ-H)4, 15, respectively. Density functional calculations confirm the hydride positions in the lowest energy structural isomers of 11 and 12 and suggest a mechanism for H2 addition to 11 that occurs on the Pt atom with the lower coordination number.

AB - Two new compounds PtRe3(CO)12(PBut 3)(μ-H)3, 9, and PtRe2(CO) 9(PBut3)(μ-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re 3(CO)12(μ-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt 2Re2(CO)7(PBut3) 2(μ-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBu t3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBu t3)2(μ-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97°C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt 2Re2(CO)8(PBut3) 2(μ-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO) 6(PBut3)3(μ-H)2, 14, and Pt3Re2(CO)6(PBut 3)3(μ-H)4, 15, respectively. Density functional calculations confirm the hydride positions in the lowest energy structural isomers of 11 and 12 and suggest a mechanism for H2 addition to 11 that occurs on the Pt atom with the lower coordination number.

UR - http://www.scopus.com/inward/record.url?scp=34248545258&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34248545258&partnerID=8YFLogxK

U2 - 10.1021/ja070773o

DO - 10.1021/ja070773o

M3 - Article

C2 - 17439219

AN - SCOPUS:34248545258

VL - 129

SP - 5981

EP - 5991

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 18

ER -