Understanding the Signal-to-Noise Paradox with a Simple Markov Model

Wei Zhang, Ben Kirtman

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


There is a growing list of examples for the existence of the signal-to-noise paradox, where in the ensemble-based climate prediction, the model ensemble mean forecast generally shows higher correlations with observations than with individual ensemble members. This seems to lead to a paradox that the model makes better predictions for the real world than predicting itself. Here we introduce a Markov model to represent the ensemble forecasts and reproduce the signal-to-noise paradox, which we argue is primarily dependent on the magnitude of the persistence and noise variance between the models and the corresponding observations. The monthly North Atlantic Oscillation indices based on uninitialized historical simulations of 40 CMIP5 models have been analyzed, suggesting that the signal-to-noise paradox is common in currently available coupled models, and the paradox is not due to problems with initialization processes used in the seasonal-to-decadal predictions in previous studies and is instead a general model problem.

Original languageEnglish (US)
Pages (from-to)13308-13317
Number of pages10
JournalGeophysical Research Letters
Issue number22
StatePublished - Nov 28 2019


  • CMIP5 models
  • Climate prediction
  • Ensemble forecast
  • Markov model
  • Signal-to-noise paradox

ASJC Scopus subject areas

  • Geophysics
  • Earth and Planetary Sciences(all)


Dive into the research topics of 'Understanding the Signal-to-Noise Paradox with a Simple Markov Model'. Together they form a unique fingerprint.

Cite this