Ultrafast photoinduced electron transfer between an incarcerated donor and a free acceptor in aqueous solution

Mintu Porel, Chi Hung Chuang, Clemens Burda, Vaidhyanathan Ramamurthy

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Supramolecular photoinduced electron transfer dynamics between coumarin 153 (C153) and 4,4′-dimethyl viologen dichloride (MV2+) across the molecular barrier of a host molecule, octa acid (OA), has been investigated with femtosecond time resolution. The ultrafast electron transfer from C153 to MV2+ followed excitation with 150 fs laser pulses at a wavelength of 390 nm despite the fact that C153 was incarcerated within an OA2 capsule. As a result, the photoexcited coumarin did not show any of the typical relaxation dynamics that is usually observed in free solution. Instead, the excited electron was transferred across the molecular wall of the capsuleplex within 20 ps. Likewise, the lifetime of the charge transfer state was short (724 ps), and electron back-transfer reestablished the ground state of the system within 1 ns, showing strong electronic coupling among the excited electron donor, host, and acceptor. When the donor was encapsulated into the host molecule, the electron transfer process showed significantly accelerated dynamics and essentially no solvent relaxation compared with that in free solution. The study was also extended to N-methylpyridinium iodide as the acceptor with similar results.

Original languageEnglish
Pages (from-to)14718-14721
Number of pages4
JournalJournal of the American Chemical Society
Volume134
Issue number36
DOIs
StatePublished - Sep 12 2012

Fingerprint

Electrons
Viologens
Molecules
Iodides
Ground state
Capsules
Charge transfer
Laser pulses
Lasers
Wavelength
Acids
coumarin 153

ASJC Scopus subject areas

  • Chemistry(all)
  • Catalysis
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

Ultrafast photoinduced electron transfer between an incarcerated donor and a free acceptor in aqueous solution. / Porel, Mintu; Chuang, Chi Hung; Burda, Clemens; Ramamurthy, Vaidhyanathan.

In: Journal of the American Chemical Society, Vol. 134, No. 36, 12.09.2012, p. 14718-14721.

Research output: Contribution to journalArticle

@article{72d6239f15fa4d7f937f1ddab0197925,
title = "Ultrafast photoinduced electron transfer between an incarcerated donor and a free acceptor in aqueous solution",
abstract = "Supramolecular photoinduced electron transfer dynamics between coumarin 153 (C153) and 4,4′-dimethyl viologen dichloride (MV2+) across the molecular barrier of a host molecule, octa acid (OA), has been investigated with femtosecond time resolution. The ultrafast electron transfer from C153 to MV2+ followed excitation with 150 fs laser pulses at a wavelength of 390 nm despite the fact that C153 was incarcerated within an OA2 capsule. As a result, the photoexcited coumarin did not show any of the typical relaxation dynamics that is usually observed in free solution. Instead, the excited electron was transferred across the molecular wall of the capsuleplex within 20 ps. Likewise, the lifetime of the charge transfer state was short (724 ps), and electron back-transfer reestablished the ground state of the system within 1 ns, showing strong electronic coupling among the excited electron donor, host, and acceptor. When the donor was encapsulated into the host molecule, the electron transfer process showed significantly accelerated dynamics and essentially no solvent relaxation compared with that in free solution. The study was also extended to N-methylpyridinium iodide as the acceptor with similar results.",
author = "Mintu Porel and Chuang, {Chi Hung} and Clemens Burda and Vaidhyanathan Ramamurthy",
year = "2012",
month = "9",
day = "12",
doi = "10.1021/ja3067594",
language = "English",
volume = "134",
pages = "14718--14721",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "36",

}

TY - JOUR

T1 - Ultrafast photoinduced electron transfer between an incarcerated donor and a free acceptor in aqueous solution

AU - Porel, Mintu

AU - Chuang, Chi Hung

AU - Burda, Clemens

AU - Ramamurthy, Vaidhyanathan

PY - 2012/9/12

Y1 - 2012/9/12

N2 - Supramolecular photoinduced electron transfer dynamics between coumarin 153 (C153) and 4,4′-dimethyl viologen dichloride (MV2+) across the molecular barrier of a host molecule, octa acid (OA), has been investigated with femtosecond time resolution. The ultrafast electron transfer from C153 to MV2+ followed excitation with 150 fs laser pulses at a wavelength of 390 nm despite the fact that C153 was incarcerated within an OA2 capsule. As a result, the photoexcited coumarin did not show any of the typical relaxation dynamics that is usually observed in free solution. Instead, the excited electron was transferred across the molecular wall of the capsuleplex within 20 ps. Likewise, the lifetime of the charge transfer state was short (724 ps), and electron back-transfer reestablished the ground state of the system within 1 ns, showing strong electronic coupling among the excited electron donor, host, and acceptor. When the donor was encapsulated into the host molecule, the electron transfer process showed significantly accelerated dynamics and essentially no solvent relaxation compared with that in free solution. The study was also extended to N-methylpyridinium iodide as the acceptor with similar results.

AB - Supramolecular photoinduced electron transfer dynamics between coumarin 153 (C153) and 4,4′-dimethyl viologen dichloride (MV2+) across the molecular barrier of a host molecule, octa acid (OA), has been investigated with femtosecond time resolution. The ultrafast electron transfer from C153 to MV2+ followed excitation with 150 fs laser pulses at a wavelength of 390 nm despite the fact that C153 was incarcerated within an OA2 capsule. As a result, the photoexcited coumarin did not show any of the typical relaxation dynamics that is usually observed in free solution. Instead, the excited electron was transferred across the molecular wall of the capsuleplex within 20 ps. Likewise, the lifetime of the charge transfer state was short (724 ps), and electron back-transfer reestablished the ground state of the system within 1 ns, showing strong electronic coupling among the excited electron donor, host, and acceptor. When the donor was encapsulated into the host molecule, the electron transfer process showed significantly accelerated dynamics and essentially no solvent relaxation compared with that in free solution. The study was also extended to N-methylpyridinium iodide as the acceptor with similar results.

UR - http://www.scopus.com/inward/record.url?scp=84866353934&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84866353934&partnerID=8YFLogxK

U2 - 10.1021/ja3067594

DO - 10.1021/ja3067594

M3 - Article

C2 - 22931120

AN - SCOPUS:84866353934

VL - 134

SP - 14718

EP - 14721

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 36

ER -