Turbulent mixing in the Red Sea outflow plume from a high-resolution nonhydrostatic model

Tamay M Ozgokmen, William E Johns, Hartmut Peters, Silvia Matt

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Given the motivation that overflow processes, which supply source waters for most of the deep and intermediate water masses in the ocean, pose significant numerical and dynamical challenges for ocean general circulation models, an intercomparison study is conducted between field data collected in the Red Sea overflow and a high-resolution, nonhydrostatic process model. The investigation is focused on the part of the outflow that flows along a long narrow channel, referred to as the "northern channel," that naturally restricts motion in the lateral direction such that the use of a two-dimensional model provides a reasonable approximation to the dynamics. This channel carries about two-thirds of the total Red Sea overflow transport, after the overflow splits into two branches in the western Gulf of Aden. The evolution of the overflow in the numerical simulations can be characterized in two phases: the first phase is highly time dependent, during which the density front associated with the overflow propagates along the channel. The second phase corresponds to that of a statistically steady state. The primary accomplishment of this study is that the model adequately captures the general characteristics of the system: (i) the gradual thickening of the overflow with downstream distance, (ii) the advection of high salinity and temperature signals at the bottom along the channel with little dilution, and (iii) ambient water masses sandwiched between the overflow and surface mixed layer. To quantify mixing of the overflow with the ambient water masses, an entrainment parameter is determined from the transport increase along the slope and is expressed explicitly as a function of mean slope angle. Bulk Richardson numbers are estimated both from data and model and are related to the entrainment parameter. The range of entrainment parameter and its functional dependence on bulk Richardson number in this study are found to be in reasonable agreement with those reported from various laboratory experiments and that based on measurements of the Mediterranean overflow. The results reveal a complex dynamical interaction between shear-induced mixing and internal waves and illustrate the high computational and modeling requirements for numerical simulation of overflows to capture (at least in part) turbulent transports explicitly.

Original languageEnglish (US)
Pages (from-to)1846-1869
Number of pages24
JournalJ. PHYSICAL OCEANOGRAPHY
Volume33
Issue number8
StatePublished - Aug 2003

Fingerprint

turbulent mixing
outflow
plume
entrainment
Richardson number
water mass
density front
general characteristics
slope angle
intermediate water
ocean
internal wave
mixed layer
simulation
general circulation model
surface layer
advection
dilution
deep water
sea

ASJC Scopus subject areas

  • Oceanography

Cite this

Turbulent mixing in the Red Sea outflow plume from a high-resolution nonhydrostatic model. / Ozgokmen, Tamay M; Johns, William E; Peters, Hartmut; Matt, Silvia.

In: J. PHYSICAL OCEANOGRAPHY, Vol. 33, No. 8, 08.2003, p. 1846-1869.

Research output: Contribution to journalArticle

@article{27eb09a6647c42cfac7528d9252b029f,
title = "Turbulent mixing in the Red Sea outflow plume from a high-resolution nonhydrostatic model",
abstract = "Given the motivation that overflow processes, which supply source waters for most of the deep and intermediate water masses in the ocean, pose significant numerical and dynamical challenges for ocean general circulation models, an intercomparison study is conducted between field data collected in the Red Sea overflow and a high-resolution, nonhydrostatic process model. The investigation is focused on the part of the outflow that flows along a long narrow channel, referred to as the {"}northern channel,{"} that naturally restricts motion in the lateral direction such that the use of a two-dimensional model provides a reasonable approximation to the dynamics. This channel carries about two-thirds of the total Red Sea overflow transport, after the overflow splits into two branches in the western Gulf of Aden. The evolution of the overflow in the numerical simulations can be characterized in two phases: the first phase is highly time dependent, during which the density front associated with the overflow propagates along the channel. The second phase corresponds to that of a statistically steady state. The primary accomplishment of this study is that the model adequately captures the general characteristics of the system: (i) the gradual thickening of the overflow with downstream distance, (ii) the advection of high salinity and temperature signals at the bottom along the channel with little dilution, and (iii) ambient water masses sandwiched between the overflow and surface mixed layer. To quantify mixing of the overflow with the ambient water masses, an entrainment parameter is determined from the transport increase along the slope and is expressed explicitly as a function of mean slope angle. Bulk Richardson numbers are estimated both from data and model and are related to the entrainment parameter. The range of entrainment parameter and its functional dependence on bulk Richardson number in this study are found to be in reasonable agreement with those reported from various laboratory experiments and that based on measurements of the Mediterranean overflow. The results reveal a complex dynamical interaction between shear-induced mixing and internal waves and illustrate the high computational and modeling requirements for numerical simulation of overflows to capture (at least in part) turbulent transports explicitly.",
author = "Ozgokmen, {Tamay M} and Johns, {William E} and Hartmut Peters and Silvia Matt",
year = "2003",
month = "8",
language = "English (US)",
volume = "33",
pages = "1846--1869",
journal = "Journal of Physical Oceanography",
issn = "0022-3670",
publisher = "American Meteorological Society",
number = "8",

}

TY - JOUR

T1 - Turbulent mixing in the Red Sea outflow plume from a high-resolution nonhydrostatic model

AU - Ozgokmen, Tamay M

AU - Johns, William E

AU - Peters, Hartmut

AU - Matt, Silvia

PY - 2003/8

Y1 - 2003/8

N2 - Given the motivation that overflow processes, which supply source waters for most of the deep and intermediate water masses in the ocean, pose significant numerical and dynamical challenges for ocean general circulation models, an intercomparison study is conducted between field data collected in the Red Sea overflow and a high-resolution, nonhydrostatic process model. The investigation is focused on the part of the outflow that flows along a long narrow channel, referred to as the "northern channel," that naturally restricts motion in the lateral direction such that the use of a two-dimensional model provides a reasonable approximation to the dynamics. This channel carries about two-thirds of the total Red Sea overflow transport, after the overflow splits into two branches in the western Gulf of Aden. The evolution of the overflow in the numerical simulations can be characterized in two phases: the first phase is highly time dependent, during which the density front associated with the overflow propagates along the channel. The second phase corresponds to that of a statistically steady state. The primary accomplishment of this study is that the model adequately captures the general characteristics of the system: (i) the gradual thickening of the overflow with downstream distance, (ii) the advection of high salinity and temperature signals at the bottom along the channel with little dilution, and (iii) ambient water masses sandwiched between the overflow and surface mixed layer. To quantify mixing of the overflow with the ambient water masses, an entrainment parameter is determined from the transport increase along the slope and is expressed explicitly as a function of mean slope angle. Bulk Richardson numbers are estimated both from data and model and are related to the entrainment parameter. The range of entrainment parameter and its functional dependence on bulk Richardson number in this study are found to be in reasonable agreement with those reported from various laboratory experiments and that based on measurements of the Mediterranean overflow. The results reveal a complex dynamical interaction between shear-induced mixing and internal waves and illustrate the high computational and modeling requirements for numerical simulation of overflows to capture (at least in part) turbulent transports explicitly.

AB - Given the motivation that overflow processes, which supply source waters for most of the deep and intermediate water masses in the ocean, pose significant numerical and dynamical challenges for ocean general circulation models, an intercomparison study is conducted between field data collected in the Red Sea overflow and a high-resolution, nonhydrostatic process model. The investigation is focused on the part of the outflow that flows along a long narrow channel, referred to as the "northern channel," that naturally restricts motion in the lateral direction such that the use of a two-dimensional model provides a reasonable approximation to the dynamics. This channel carries about two-thirds of the total Red Sea overflow transport, after the overflow splits into two branches in the western Gulf of Aden. The evolution of the overflow in the numerical simulations can be characterized in two phases: the first phase is highly time dependent, during which the density front associated with the overflow propagates along the channel. The second phase corresponds to that of a statistically steady state. The primary accomplishment of this study is that the model adequately captures the general characteristics of the system: (i) the gradual thickening of the overflow with downstream distance, (ii) the advection of high salinity and temperature signals at the bottom along the channel with little dilution, and (iii) ambient water masses sandwiched between the overflow and surface mixed layer. To quantify mixing of the overflow with the ambient water masses, an entrainment parameter is determined from the transport increase along the slope and is expressed explicitly as a function of mean slope angle. Bulk Richardson numbers are estimated both from data and model and are related to the entrainment parameter. The range of entrainment parameter and its functional dependence on bulk Richardson number in this study are found to be in reasonable agreement with those reported from various laboratory experiments and that based on measurements of the Mediterranean overflow. The results reveal a complex dynamical interaction between shear-induced mixing and internal waves and illustrate the high computational and modeling requirements for numerical simulation of overflows to capture (at least in part) turbulent transports explicitly.

UR - http://www.scopus.com/inward/record.url?scp=17944391065&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17944391065&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:17944391065

VL - 33

SP - 1846

EP - 1869

JO - Journal of Physical Oceanography

JF - Journal of Physical Oceanography

SN - 0022-3670

IS - 8

ER -