Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx

Virendra P. Ghate, Bruce A. Albrecht, Mark A. Miller, Alan Brewer, Christopher W. Fairall

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Observations made during a 24-h period as part of the Variability of the American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) are analyzed to study the radiation and turbulence associated with the stratocumulus-topped marine boundary layer (BL). The first 14 h exhibited a well-mixed (coupled) BL with an average cloud-top radiative flux divergence of ~130Wm-2; the BL was decoupled during the last 10 h with negligible radiative flux divergence. The averaged radiative cooling very close to the cloud top was -9.04Kh-1 in coupled conditions and -3.85Kh-1 in decoupled conditions. This is the first study that combined data from a vertically pointing Doppler cloud radar and a Doppler lidar to yield the vertical velocity structure of the entire BL. The averaged vertical velocity variance and updraft mass flux during coupled conditions were higher than those during decoupled conditions at all levels by a factor of 2 or more. The vertical velocity skewness was negative in the entire BL during coupled conditions, whereas it was weakly positive in the lower third of the BL and negative above during decoupled conditions. A formulation of velocity scale is proposed that includes the effect of cloud-top radiative cooling in addition to the surface buoyancy flux. When scaled by the velocity scale, the vertical velocity variance and coherent downdrafts had similar magnitude during the coupled and decoupled conditions. The coherent updrafts that exhibited a constant profile in the entire BL during both the coupled and decoupled conditions scaled well with the convective velocity scale to a value of ~ 0.5.

Original languageEnglish (US)
Pages (from-to)117-135
Number of pages19
JournalJournal of Applied Meteorology and Climatology
Volume53
Issue number1
DOIs
StatePublished - Jan 2014

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint Dive into the research topics of 'Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx'. Together they form a unique fingerprint.

Cite this