TY - JOUR
T1 - Triple negative breast cancers express receptors for LHRH and are potential therapeutic targets for cytotoxic LHRH-analogs, AEZS 108 and AEZS 125
AU - Seitz, Stephan
AU - Buchholz, Stefan
AU - Schally, Andrew Victor
AU - Weber, Florian
AU - Klinkhammer-Schalke, Monika
AU - Inwald, Elisabeth C.
AU - Perez, Roberto
AU - Rick, Ferenc G.
AU - Szalontay, Luca
AU - Hohla, Florian
AU - Segerer, Sabine
AU - Kwok, Chui Wai
AU - Ortmann, Olaf
AU - Engel, Jörg Bernhard
N1 - Funding Information:
JBE, AVS received travel grants from Aeterna/Zentaris. The other authors declare no COI.
Funding Information:
The present work was funded by grant by Deutsche Forschungsgemeinschaft (DFG) to JBE (EN 484).
PY - 2014/11/19
Y1 - 2014/11/19
N2 - Background: Triple negative breast cancer (TNBC) is a distinct subtype of breast cancer burdened with a dismal prognosis due to the lack of effective therapeutic agents. Receptors for LHRH (luteinizing hormone-releasing hormone) can be successfully targeted with AEZS-108 [AN-152], an analog of LHRH conjugated to doxorubicin. Our study evaluates the presence of this target LHRH receptor in human specimens of TNBC and investigates the efficacy and toxicity of AEZS-108 in vivo. We also studied in vitro activity of AEZS-125, a new LHRH analog conjugated with the highly potent natural compound, Disorazol Z. Methods: 69 human surgical specimens of TNBC were investigated for LHRH-R expression by immunohistochemistry. Expression of LHRH-R in two TNBC cell lines was evaluated by real time RT-PCR. Cytotoxicity of AEZS-125 was evaluated by Cell Titer Blue cytoxicity assay. LHRH- receptor expression was silenced with an siRNA in both cell lines. For the in vivo experiments an athymic nude mice model xenotransplanted with the cell lines, MDA-MB-231 and HCC 1806, was used. The animals were randomised to three groups receiving solvent only (d 1, 7, 14, i.v.) for control, AEZS-108 (d 1, 7, 14, i.v.) or doxorubicin at an equimolar dose (d 1, 7, 14, i.v.). Results: In human clinical specimens of TNBC, expression of the LHRH-receptor was present in 49% (n = 69). HCC 1806 and MDA-MB-231 TNBC cells expressed mRNA for the LHRH-receptor. Silencing of the LHRH-receptor significantly decreased the cytotoxic effect of AEZS-108. MDA-MB-231 and HCC 1806 tumors xenografted into nude mice were significantly inhibited by treatment with AEZS-108; doxorubicin at equimolar doses was ineffective. As compared to AEZS 108, the Disorazol Z - LHRH conjugate, AEZS-125, demonstrated an increased cytotoxicity in vitro in HCC 1806 and MDA-MB-231 TNBC; this was diminished by receptor blockade with synthetic LHRH agonist (triptorelin) pretreatment. Conclusion: The current study confirms that LHRH-receptors are expressed by a significant proportion of TNBC and can be successfully used as homing sites for cytotoxic analogs of LHRH, such as AEZS-108 and AEZS-125.
AB - Background: Triple negative breast cancer (TNBC) is a distinct subtype of breast cancer burdened with a dismal prognosis due to the lack of effective therapeutic agents. Receptors for LHRH (luteinizing hormone-releasing hormone) can be successfully targeted with AEZS-108 [AN-152], an analog of LHRH conjugated to doxorubicin. Our study evaluates the presence of this target LHRH receptor in human specimens of TNBC and investigates the efficacy and toxicity of AEZS-108 in vivo. We also studied in vitro activity of AEZS-125, a new LHRH analog conjugated with the highly potent natural compound, Disorazol Z. Methods: 69 human surgical specimens of TNBC were investigated for LHRH-R expression by immunohistochemistry. Expression of LHRH-R in two TNBC cell lines was evaluated by real time RT-PCR. Cytotoxicity of AEZS-125 was evaluated by Cell Titer Blue cytoxicity assay. LHRH- receptor expression was silenced with an siRNA in both cell lines. For the in vivo experiments an athymic nude mice model xenotransplanted with the cell lines, MDA-MB-231 and HCC 1806, was used. The animals were randomised to three groups receiving solvent only (d 1, 7, 14, i.v.) for control, AEZS-108 (d 1, 7, 14, i.v.) or doxorubicin at an equimolar dose (d 1, 7, 14, i.v.). Results: In human clinical specimens of TNBC, expression of the LHRH-receptor was present in 49% (n = 69). HCC 1806 and MDA-MB-231 TNBC cells expressed mRNA for the LHRH-receptor. Silencing of the LHRH-receptor significantly decreased the cytotoxic effect of AEZS-108. MDA-MB-231 and HCC 1806 tumors xenografted into nude mice were significantly inhibited by treatment with AEZS-108; doxorubicin at equimolar doses was ineffective. As compared to AEZS 108, the Disorazol Z - LHRH conjugate, AEZS-125, demonstrated an increased cytotoxicity in vitro in HCC 1806 and MDA-MB-231 TNBC; this was diminished by receptor blockade with synthetic LHRH agonist (triptorelin) pretreatment. Conclusion: The current study confirms that LHRH-receptors are expressed by a significant proportion of TNBC and can be successfully used as homing sites for cytotoxic analogs of LHRH, such as AEZS-108 and AEZS-125.
KW - AEZS 108
KW - AEZS 125
KW - LHRH- receptor
KW - Targeted therapy
KW - Triple negative breast cancer
UR - http://www.scopus.com/inward/record.url?scp=84924630979&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924630979&partnerID=8YFLogxK
U2 - 10.1186/1471-2407-14-847
DO - 10.1186/1471-2407-14-847
M3 - Article
C2 - 25410881
AN - SCOPUS:84924630979
VL - 14
JO - BMC Cancer
JF - BMC Cancer
SN - 1471-2407
IS - 1
M1 - 847
ER -