Transient middle cerebral artery occlusion by intraluminal suture

II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization

Weizhao Zhao, Ludmila Belayev, Myron Ginsberg

Research output: Contribution to journalArticle

77 Citations (Scopus)

Abstract

We conducted a pixel-based analysis of the acute hemodynamic and metabolic determinants of infarctive histopathology in a reproducible model of temporary (2-hour) middle cerebral artery occlusion (MCAO) produced in rats by an intraluminal suture. Three-dimensional averaged image data sets of local cerebral blood flow (LCBF) and glucose utilization (LCMRglc) acquired in the companion study (Belayev et al., 1997) either at the end of a 2-hour period of MCAO or after 1 hour of recirculation were comapped (using digitized atlas-templates) with data sets depicting the frequency of histological infarction in a matched animal group (n = 8) in which 2 hours of MCAO was followed by 3-day survival, sequential neuro-behavioral examinations, and perfusion-fixation and paraffin-embedding of brains for light-microscopic analysis. All rats developed marked postural-reflex and forelimb-placing deficits at 60 minutes of MCAO, signifying high-grade ischemia. Tactile placing deficits persisted during the 72-hour observation period while visual placing and postural-reflex abnormalities variably improved. Comapping of LCBF and histopathology showed that in those pixels destined to undergo infarction, LCBF measured at 2 hours of MCAO showed a sharp distributional peak centered at 0.14 mL/g/min. In 70% of pixels destined to infarct, LCBF at 2 hours of MCAO was 0.24 mL/g/min or below, and in 89% LCBF was below 0.47 mL/g/min (the upper limits of the ischemic core and penumbra, respectively, as defined in the companion study [Belayev et al., 1997]). Local cerebral glucose utilization measured at ~1 hour after 2 hours of MCAO was distributed bimodally in the previously ischemic hemisphere. The major peak, at 22 μmol/100 g/min, coincided exactly with the distribution peak of pixels destined to undergo infarction, while in pixels with a zero probability of infarction, LCMRglc was higher by 12 to 13 μmol/100 g/min. These results indicate that local blood flow at 2 hours of MCAO is a robust predictor of eventual infarction. Pixels with ischemic-core levels of LCBF (0% to 20% of control) have a 96% probability of infarction, while the fate of the penumbra is more heterogeneous: below LCBF of 0.35 mL/g/min, the probability of infarction is 92%, while approximately 20% pixels in the upper-penumbral LCBF range (30% to 40% of control) escape infarction. Our data strongly support the view that the likelihood of infarction within the ischemic penumbra is highly influenced by very subtle differences in early perfusion.

Original languageEnglish
Pages (from-to)1281-1290
Number of pages10
JournalJournal of Cerebral Blood Flow and Metabolism
Volume17
Issue number12
StatePublished - Dec 1 1997

Fingerprint

Cerebrovascular Circulation
Middle Cerebral Artery Infarction
Infarction
Sutures
Blood Glucose
Reflex
Perfusion
Paraffin Embedding
Three-Dimensional Imaging
Forelimb
Atlases
Touch
Research Design
Ischemia
Hemodynamics
Observation

Keywords

  • Auto-radiography
  • Cerebral infarction
  • Focal cerebral ischemia
  • Image- processing
  • Penumbra
  • Stroke

ASJC Scopus subject areas

  • Endocrinology
  • Neuroscience(all)
  • Endocrinology, Diabetes and Metabolism

Cite this

@article{ca87d222f5434708ae26b37316391a78,
title = "Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization",
abstract = "We conducted a pixel-based analysis of the acute hemodynamic and metabolic determinants of infarctive histopathology in a reproducible model of temporary (2-hour) middle cerebral artery occlusion (MCAO) produced in rats by an intraluminal suture. Three-dimensional averaged image data sets of local cerebral blood flow (LCBF) and glucose utilization (LCMRglc) acquired in the companion study (Belayev et al., 1997) either at the end of a 2-hour period of MCAO or after 1 hour of recirculation were comapped (using digitized atlas-templates) with data sets depicting the frequency of histological infarction in a matched animal group (n = 8) in which 2 hours of MCAO was followed by 3-day survival, sequential neuro-behavioral examinations, and perfusion-fixation and paraffin-embedding of brains for light-microscopic analysis. All rats developed marked postural-reflex and forelimb-placing deficits at 60 minutes of MCAO, signifying high-grade ischemia. Tactile placing deficits persisted during the 72-hour observation period while visual placing and postural-reflex abnormalities variably improved. Comapping of LCBF and histopathology showed that in those pixels destined to undergo infarction, LCBF measured at 2 hours of MCAO showed a sharp distributional peak centered at 0.14 mL/g/min. In 70{\%} of pixels destined to infarct, LCBF at 2 hours of MCAO was 0.24 mL/g/min or below, and in 89{\%} LCBF was below 0.47 mL/g/min (the upper limits of the ischemic core and penumbra, respectively, as defined in the companion study [Belayev et al., 1997]). Local cerebral glucose utilization measured at ~1 hour after 2 hours of MCAO was distributed bimodally in the previously ischemic hemisphere. The major peak, at 22 μmol/100 g/min, coincided exactly with the distribution peak of pixels destined to undergo infarction, while in pixels with a zero probability of infarction, LCMRglc was higher by 12 to 13 μmol/100 g/min. These results indicate that local blood flow at 2 hours of MCAO is a robust predictor of eventual infarction. Pixels with ischemic-core levels of LCBF (0{\%} to 20{\%} of control) have a 96{\%} probability of infarction, while the fate of the penumbra is more heterogeneous: below LCBF of 0.35 mL/g/min, the probability of infarction is 92{\%}, while approximately 20{\%} pixels in the upper-penumbral LCBF range (30{\%} to 40{\%} of control) escape infarction. Our data strongly support the view that the likelihood of infarction within the ischemic penumbra is highly influenced by very subtle differences in early perfusion.",
keywords = "Auto-radiography, Cerebral infarction, Focal cerebral ischemia, Image- processing, Penumbra, Stroke",
author = "Weizhao Zhao and Ludmila Belayev and Myron Ginsberg",
year = "1997",
month = "12",
day = "1",
language = "English",
volume = "17",
pages = "1281--1290",
journal = "Journal of Cerebral Blood Flow and Metabolism",
issn = "0271-678X",
publisher = "Nature Publishing Group",
number = "12",

}

TY - JOUR

T1 - Transient middle cerebral artery occlusion by intraluminal suture

T2 - II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization

AU - Zhao, Weizhao

AU - Belayev, Ludmila

AU - Ginsberg, Myron

PY - 1997/12/1

Y1 - 1997/12/1

N2 - We conducted a pixel-based analysis of the acute hemodynamic and metabolic determinants of infarctive histopathology in a reproducible model of temporary (2-hour) middle cerebral artery occlusion (MCAO) produced in rats by an intraluminal suture. Three-dimensional averaged image data sets of local cerebral blood flow (LCBF) and glucose utilization (LCMRglc) acquired in the companion study (Belayev et al., 1997) either at the end of a 2-hour period of MCAO or after 1 hour of recirculation were comapped (using digitized atlas-templates) with data sets depicting the frequency of histological infarction in a matched animal group (n = 8) in which 2 hours of MCAO was followed by 3-day survival, sequential neuro-behavioral examinations, and perfusion-fixation and paraffin-embedding of brains for light-microscopic analysis. All rats developed marked postural-reflex and forelimb-placing deficits at 60 minutes of MCAO, signifying high-grade ischemia. Tactile placing deficits persisted during the 72-hour observation period while visual placing and postural-reflex abnormalities variably improved. Comapping of LCBF and histopathology showed that in those pixels destined to undergo infarction, LCBF measured at 2 hours of MCAO showed a sharp distributional peak centered at 0.14 mL/g/min. In 70% of pixels destined to infarct, LCBF at 2 hours of MCAO was 0.24 mL/g/min or below, and in 89% LCBF was below 0.47 mL/g/min (the upper limits of the ischemic core and penumbra, respectively, as defined in the companion study [Belayev et al., 1997]). Local cerebral glucose utilization measured at ~1 hour after 2 hours of MCAO was distributed bimodally in the previously ischemic hemisphere. The major peak, at 22 μmol/100 g/min, coincided exactly with the distribution peak of pixels destined to undergo infarction, while in pixels with a zero probability of infarction, LCMRglc was higher by 12 to 13 μmol/100 g/min. These results indicate that local blood flow at 2 hours of MCAO is a robust predictor of eventual infarction. Pixels with ischemic-core levels of LCBF (0% to 20% of control) have a 96% probability of infarction, while the fate of the penumbra is more heterogeneous: below LCBF of 0.35 mL/g/min, the probability of infarction is 92%, while approximately 20% pixels in the upper-penumbral LCBF range (30% to 40% of control) escape infarction. Our data strongly support the view that the likelihood of infarction within the ischemic penumbra is highly influenced by very subtle differences in early perfusion.

AB - We conducted a pixel-based analysis of the acute hemodynamic and metabolic determinants of infarctive histopathology in a reproducible model of temporary (2-hour) middle cerebral artery occlusion (MCAO) produced in rats by an intraluminal suture. Three-dimensional averaged image data sets of local cerebral blood flow (LCBF) and glucose utilization (LCMRglc) acquired in the companion study (Belayev et al., 1997) either at the end of a 2-hour period of MCAO or after 1 hour of recirculation were comapped (using digitized atlas-templates) with data sets depicting the frequency of histological infarction in a matched animal group (n = 8) in which 2 hours of MCAO was followed by 3-day survival, sequential neuro-behavioral examinations, and perfusion-fixation and paraffin-embedding of brains for light-microscopic analysis. All rats developed marked postural-reflex and forelimb-placing deficits at 60 minutes of MCAO, signifying high-grade ischemia. Tactile placing deficits persisted during the 72-hour observation period while visual placing and postural-reflex abnormalities variably improved. Comapping of LCBF and histopathology showed that in those pixels destined to undergo infarction, LCBF measured at 2 hours of MCAO showed a sharp distributional peak centered at 0.14 mL/g/min. In 70% of pixels destined to infarct, LCBF at 2 hours of MCAO was 0.24 mL/g/min or below, and in 89% LCBF was below 0.47 mL/g/min (the upper limits of the ischemic core and penumbra, respectively, as defined in the companion study [Belayev et al., 1997]). Local cerebral glucose utilization measured at ~1 hour after 2 hours of MCAO was distributed bimodally in the previously ischemic hemisphere. The major peak, at 22 μmol/100 g/min, coincided exactly with the distribution peak of pixels destined to undergo infarction, while in pixels with a zero probability of infarction, LCMRglc was higher by 12 to 13 μmol/100 g/min. These results indicate that local blood flow at 2 hours of MCAO is a robust predictor of eventual infarction. Pixels with ischemic-core levels of LCBF (0% to 20% of control) have a 96% probability of infarction, while the fate of the penumbra is more heterogeneous: below LCBF of 0.35 mL/g/min, the probability of infarction is 92%, while approximately 20% pixels in the upper-penumbral LCBF range (30% to 40% of control) escape infarction. Our data strongly support the view that the likelihood of infarction within the ischemic penumbra is highly influenced by very subtle differences in early perfusion.

KW - Auto-radiography

KW - Cerebral infarction

KW - Focal cerebral ischemia

KW - Image- processing

KW - Penumbra

KW - Stroke

UR - http://www.scopus.com/inward/record.url?scp=0030670117&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030670117&partnerID=8YFLogxK

M3 - Article

VL - 17

SP - 1281

EP - 1290

JO - Journal of Cerebral Blood Flow and Metabolism

JF - Journal of Cerebral Blood Flow and Metabolism

SN - 0271-678X

IS - 12

ER -