TY - JOUR
T1 - Transforming growth factor-β1 and cigarette smoke inhibit the ability of β2-agonists to enhance epithelial permeability
AU - Unwalla, Hoshang J.
AU - Ivonnet, Pedro
AU - Dennis, John S.
AU - Conner, Gregory E.
AU - Salathe, Matthias
N1 - Publisher Copyright:
Copyright © 2015 by the American Thoracic Society
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl2 and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers. β2-adrenergic receptor (β2-AR) agonists are widely used for managing chronic obstructive pulmonary disease, and can activate CFTR, stimulate ciliary beat frequency, and increase epithelialpermeability, thereby stimulatingMCC.Patientswith chronic airway diseases and cigarette smokers demonstrate increased transforming growth factor (TGF)-b1 signaling, which suppresses β2-agonist-mediated CFTR activation and epithelial permeability increases. Restoring CFTR function in these diseases can restore the ability of β2-agonists to enhance epithelial permeability. Human bronchial epithelial cells, fully redifferentiated at the air-liquid interface, were used for 14Cmannitol flux measurements, Ussing chamber experiments, and quantitative RT-PCR. β2-agonists enhance epithelial permeability by activatingCFTRvia the β2-AR/adenylyl cyclase/cAMP/ protein kinase A pathway. TGF-b1 inhibits β2-agonist-mediated CFTR activation and epithelial permeability enhancement. Although TGF-b1 down-regulates both β2-AR and CFTR mRNA, functionally it only decreases CFTR activity. Cigarette smoke exposure inhibits β2-agonist-mediated epithelialpermeability increases, an effect reversed by blocking TGF-b signaling. β2-agonists enhance epithelial permeability via CFTR activation. TGF-β1 signaling inhibits β2-agonist-mediated CFTR activation and subsequent increased epithelial permeability, potentially limiting the ability of β2-agonists to facilitate paracellular transport in disease states unless TGF-β1 signaling is inhibited.
AB - Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl2 and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers. β2-adrenergic receptor (β2-AR) agonists are widely used for managing chronic obstructive pulmonary disease, and can activate CFTR, stimulate ciliary beat frequency, and increase epithelialpermeability, thereby stimulatingMCC.Patientswith chronic airway diseases and cigarette smokers demonstrate increased transforming growth factor (TGF)-b1 signaling, which suppresses β2-agonist-mediated CFTR activation and epithelial permeability increases. Restoring CFTR function in these diseases can restore the ability of β2-agonists to enhance epithelial permeability. Human bronchial epithelial cells, fully redifferentiated at the air-liquid interface, were used for 14Cmannitol flux measurements, Ussing chamber experiments, and quantitative RT-PCR. β2-agonists enhance epithelial permeability by activatingCFTRvia the β2-AR/adenylyl cyclase/cAMP/ protein kinase A pathway. TGF-b1 inhibits β2-agonist-mediated CFTR activation and epithelial permeability enhancement. Although TGF-b1 down-regulates both β2-AR and CFTR mRNA, functionally it only decreases CFTR activity. Cigarette smoke exposure inhibits β2-agonist-mediated epithelialpermeability increases, an effect reversed by blocking TGF-b signaling. β2-agonists enhance epithelial permeability via CFTR activation. TGF-β1 signaling inhibits β2-agonist-mediated CFTR activation and subsequent increased epithelial permeability, potentially limiting the ability of β2-agonists to facilitate paracellular transport in disease states unless TGF-β1 signaling is inhibited.
KW - Cigarette smoke
KW - Cystic fibrosis transmembrane conductance regulator
KW - Epithelial permeability
KW - Transforming growth factor-β
UR - http://www.scopus.com/inward/record.url?scp=84920265856&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920265856&partnerID=8YFLogxK
U2 - 10.1165/rcmb.2013-0538OC
DO - 10.1165/rcmb.2013-0538OC
M3 - Article
C2 - 24978189
AN - SCOPUS:84920265856
VL - 52
SP - 65
EP - 74
JO - American Journal of Respiratory Cell and Molecular Biology
JF - American Journal of Respiratory Cell and Molecular Biology
SN - 1044-1549
IS - 1
ER -