Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit

Charles W. Luetje, Sisi Chen

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control. Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry. Synthetic Orco directed agonists and antagonists have recently been identified. Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants. The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants. To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists. Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system. Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants. Tyramine had effects similar to those of tryptamine, but was less potent. Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae). Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants.

Original languageEnglish (US)
JournalF1000Research
Volume3
DOIs
StatePublished - Apr 3 2014

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit'. Together they form a unique fingerprint.

  • Cite this