TY - JOUR
T1 - Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit
AU - Luetje, Charles W.
AU - Chen, Sisi
N1 - Publisher Copyright:
© 2014 Chen S and Luetje CW.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014/4/3
Y1 - 2014/4/3
N2 - Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control. Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry. Synthetic Orco directed agonists and antagonists have recently been identified. Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants. The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants. To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists. Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system. Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants. Tyramine had effects similar to those of tryptamine, but was less potent. Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae). Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants.
AB - Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control. Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry. Synthetic Orco directed agonists and antagonists have recently been identified. Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants. The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants. To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists. Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system. Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants. Tyramine had effects similar to those of tryptamine, but was less potent. Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae). Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants.
UR - http://www.scopus.com/inward/record.url?scp=84921727553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921727553&partnerID=8YFLogxK
U2 - 10.12688/f1000research.3825.1
DO - 10.12688/f1000research.3825.1
M3 - Article
AN - SCOPUS:84921727553
VL - 3
JO - F1000Research
JF - F1000Research
SN - 2046-1402
ER -