Toxin levels in serum correlate with the development of staphylococcal scalded skin syndrome in a murine model

L. R.W. Plano, B. Adkins, M. Woischnik, R. Ewing, C. M. Collins

Research output: Contribution to journalArticle

28 Scopus citations

Abstract

Staphylococcal scalded skin syndrome (SSSS) is an exfoliative dermatitis that results from infection with exfoliative toxin-producing Staphylococcus aureus. SSSS is seen primarily in infants and children. Here we ask if there is a specific maturation process that protects healthy adults from this syndrome. For these studies, an active recombinant exfoliative toxin A (rETA) was used in a neonatal mouse model. A time course generated on the susceptibility to the toxin as a function of mouse age indicated that BALB/c mice developed the characteristic symptoms of SSSS until day 7 of life. Between day 7 and day 8 of life there was a dramatic decrease in susceptibility, such that mice at day 9 of life were resistant to the effects of the toxin. This time course corresponds approximately to the time needed for maturation of the adaptive immune response, and SSSS in adults is often identified with immunocompromised states. Therefore, mice deficient in this response were examined. Adult mice thymectomized at birth and adult SCID mice did not develop the symptoms of SSSS after injection with the toxin, indicating that the adaptive immune response is not responsible for the lack of susceptibility observed in the older mice. SSSS in adults is also associated with renal disorders, suggesting that levels of toxin in serum are important in the development of the disease. rETA was not cleared as efficiently from the serum of 1-day-old mice compared to clearance from 10-day-old mice. Ten-day-old mice were given repeated injections of toxin so that the maximal level of toxin was maintained for a sustained period of time, and exfoliation occurred in these mice. Thus, whereas the adaptive immune response is not needed for protection of adult mice from SSSS, efficient clearance of the toxin from the bloodstream is a critical factor.

Original languageEnglish (US)
Pages (from-to)5193-5197
Number of pages5
JournalInfection and immunity
Volume69
Issue number8
DOIs
StatePublished - 2001

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Fingerprint Dive into the research topics of 'Toxin levels in serum correlate with the development of staphylococcal scalded skin syndrome in a murine model'. Together they form a unique fingerprint.

  • Cite this