Toward reversible control of cucurbit[ n ]uril complexes

Research output: Contribution to journalArticle

143 Citations (Scopus)

Abstract

ConspectusThe cucurbit[n]uril (CBn) host family consists of a group of rigid macrocyclic hosts with barrel-like shapes and limited solubility in aqueous media. These hosts are capable of reaching high binding affinities with positively charged hydrophobic guests. In optimum cases, equilibrium association constant (K) values as high as 1017 M-1 have been reported, exceeding the binding affinity of the avidin-biotin host-guest pair. The synthetic CBn receptors have shattered the notion that highly stable noncovalent complexes can form only when one of the partners is a molecule of biological origin.The work described in this Account is concerned with the development of methods geared toward the reversible modulation of the binding affinity of CBn inclusion complexes under mild conditions. A good fraction of the research work has dealt with redox active guests, such as 4,4′-bipyridinium (viologen), ferrocene, and cobaltocenium derivatives. Our experimental results show that the thermodynamics and kinetics of the electron transfer reactions of these compounds can be substantially altered by complexation with CBn hosts, and therefore, electron transfer reactions can be used to exert a measure of control on the overall binding affinity of the CBn complexes. We have also developed systems in which proton transfer reactions have a strong effect on the binding affinity. With more structurally elaborate guests containing more than one adjacent binding sites, proton transfer reactions may affect the average location of the CBn host within the complexes.A series of guest compounds containing paramagnetic 2,2,6,6- tetramethylpiperidine-1-oxyl (TEMPO) residues also exhibit interesting binding properties with CB7 and CB8. The latter host forms a very stable host-guest pair with TEMPO subunits, in which the nitroxide group resides inside the host cavity. Finally, with suitable ditopic guests, we have detected distinct microscopic complexes using experimental techniques with relatively slow time scales, such as NMR spectroscopy. These unusual findings are the result of the considerable thermodynamic and kinetic stability of CBn inclusion complexes.

Original languageEnglish
Pages (from-to)2160-2167
Number of pages8
JournalAccounts of Chemical Research
Volume47
Issue number7
DOIs
StatePublished - Jul 15 2014

Fingerprint

Proton transfer
Viologens
Artificial Receptors
Thermodynamics
Kinetics
Avidin
Electrons
Biotin
Complexation
Nuclear magnetic resonance spectroscopy
Solubility
Binding Sites
Modulation
Association reactions
Derivatives
Molecules
TEMPO
ferrocene
Oxidation-Reduction

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Toward reversible control of cucurbit[ n ]uril complexes. / Kaifer, Angel.

In: Accounts of Chemical Research, Vol. 47, No. 7, 15.07.2014, p. 2160-2167.

Research output: Contribution to journalArticle

@article{f002bb851f38443ba5194d90d10dfc4d,
title = "Toward reversible control of cucurbit[ n ]uril complexes",
abstract = "ConspectusThe cucurbit[n]uril (CBn) host family consists of a group of rigid macrocyclic hosts with barrel-like shapes and limited solubility in aqueous media. These hosts are capable of reaching high binding affinities with positively charged hydrophobic guests. In optimum cases, equilibrium association constant (K) values as high as 1017 M-1 have been reported, exceeding the binding affinity of the avidin-biotin host-guest pair. The synthetic CBn receptors have shattered the notion that highly stable noncovalent complexes can form only when one of the partners is a molecule of biological origin.The work described in this Account is concerned with the development of methods geared toward the reversible modulation of the binding affinity of CBn inclusion complexes under mild conditions. A good fraction of the research work has dealt with redox active guests, such as 4,4′-bipyridinium (viologen), ferrocene, and cobaltocenium derivatives. Our experimental results show that the thermodynamics and kinetics of the electron transfer reactions of these compounds can be substantially altered by complexation with CBn hosts, and therefore, electron transfer reactions can be used to exert a measure of control on the overall binding affinity of the CBn complexes. We have also developed systems in which proton transfer reactions have a strong effect on the binding affinity. With more structurally elaborate guests containing more than one adjacent binding sites, proton transfer reactions may affect the average location of the CBn host within the complexes.A series of guest compounds containing paramagnetic 2,2,6,6- tetramethylpiperidine-1-oxyl (TEMPO) residues also exhibit interesting binding properties with CB7 and CB8. The latter host forms a very stable host-guest pair with TEMPO subunits, in which the nitroxide group resides inside the host cavity. Finally, with suitable ditopic guests, we have detected distinct microscopic complexes using experimental techniques with relatively slow time scales, such as NMR spectroscopy. These unusual findings are the result of the considerable thermodynamic and kinetic stability of CBn inclusion complexes.",
author = "Angel Kaifer",
year = "2014",
month = "7",
day = "15",
doi = "10.1021/ar5001204",
language = "English",
volume = "47",
pages = "2160--2167",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "7",

}

TY - JOUR

T1 - Toward reversible control of cucurbit[ n ]uril complexes

AU - Kaifer, Angel

PY - 2014/7/15

Y1 - 2014/7/15

N2 - ConspectusThe cucurbit[n]uril (CBn) host family consists of a group of rigid macrocyclic hosts with barrel-like shapes and limited solubility in aqueous media. These hosts are capable of reaching high binding affinities with positively charged hydrophobic guests. In optimum cases, equilibrium association constant (K) values as high as 1017 M-1 have been reported, exceeding the binding affinity of the avidin-biotin host-guest pair. The synthetic CBn receptors have shattered the notion that highly stable noncovalent complexes can form only when one of the partners is a molecule of biological origin.The work described in this Account is concerned with the development of methods geared toward the reversible modulation of the binding affinity of CBn inclusion complexes under mild conditions. A good fraction of the research work has dealt with redox active guests, such as 4,4′-bipyridinium (viologen), ferrocene, and cobaltocenium derivatives. Our experimental results show that the thermodynamics and kinetics of the electron transfer reactions of these compounds can be substantially altered by complexation with CBn hosts, and therefore, electron transfer reactions can be used to exert a measure of control on the overall binding affinity of the CBn complexes. We have also developed systems in which proton transfer reactions have a strong effect on the binding affinity. With more structurally elaborate guests containing more than one adjacent binding sites, proton transfer reactions may affect the average location of the CBn host within the complexes.A series of guest compounds containing paramagnetic 2,2,6,6- tetramethylpiperidine-1-oxyl (TEMPO) residues also exhibit interesting binding properties with CB7 and CB8. The latter host forms a very stable host-guest pair with TEMPO subunits, in which the nitroxide group resides inside the host cavity. Finally, with suitable ditopic guests, we have detected distinct microscopic complexes using experimental techniques with relatively slow time scales, such as NMR spectroscopy. These unusual findings are the result of the considerable thermodynamic and kinetic stability of CBn inclusion complexes.

AB - ConspectusThe cucurbit[n]uril (CBn) host family consists of a group of rigid macrocyclic hosts with barrel-like shapes and limited solubility in aqueous media. These hosts are capable of reaching high binding affinities with positively charged hydrophobic guests. In optimum cases, equilibrium association constant (K) values as high as 1017 M-1 have been reported, exceeding the binding affinity of the avidin-biotin host-guest pair. The synthetic CBn receptors have shattered the notion that highly stable noncovalent complexes can form only when one of the partners is a molecule of biological origin.The work described in this Account is concerned with the development of methods geared toward the reversible modulation of the binding affinity of CBn inclusion complexes under mild conditions. A good fraction of the research work has dealt with redox active guests, such as 4,4′-bipyridinium (viologen), ferrocene, and cobaltocenium derivatives. Our experimental results show that the thermodynamics and kinetics of the electron transfer reactions of these compounds can be substantially altered by complexation with CBn hosts, and therefore, electron transfer reactions can be used to exert a measure of control on the overall binding affinity of the CBn complexes. We have also developed systems in which proton transfer reactions have a strong effect on the binding affinity. With more structurally elaborate guests containing more than one adjacent binding sites, proton transfer reactions may affect the average location of the CBn host within the complexes.A series of guest compounds containing paramagnetic 2,2,6,6- tetramethylpiperidine-1-oxyl (TEMPO) residues also exhibit interesting binding properties with CB7 and CB8. The latter host forms a very stable host-guest pair with TEMPO subunits, in which the nitroxide group resides inside the host cavity. Finally, with suitable ditopic guests, we have detected distinct microscopic complexes using experimental techniques with relatively slow time scales, such as NMR spectroscopy. These unusual findings are the result of the considerable thermodynamic and kinetic stability of CBn inclusion complexes.

UR - http://www.scopus.com/inward/record.url?scp=84904409289&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84904409289&partnerID=8YFLogxK

U2 - 10.1021/ar5001204

DO - 10.1021/ar5001204

M3 - Article

AN - SCOPUS:84904409289

VL - 47

SP - 2160

EP - 2167

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 7

ER -