Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat

Research output: Contribution to journalArticle

145 Scopus citations


We examined the organization of descending projections from the inferior colliculus (IC) to auditory brainstem nuclei and to pontine and reticular nuclei in the rat by employing the anterograde axonal tracer Phaseolus vulgaris-leucoagglutinin (PHA-L). Small PHA-L injections into cytologically defined subnuclei of the IC revealed that each subnucleus has a unique pattern of efferent projections. The central nucleus of the IC projects in a topographic order to the dorsal nucleus of the lateral lemniscus (DLL), the rostral periolivary nucleus (RPO), the ventral nucleus of the trapezoid body (VNTB), and the dorsal cochlear nucleus (DCN). It is assumed that this topography represents a cochleotopic arrangement. The external cortex of the IC projects to the nucleus sagulum (Sag), the RPO, the VNTB, and the DCN. Minor projections were found to pontine and reticular nuclei. Efferent fibers from the dorsal cortex of the IC terminate mainly in the Sag, while other nuclei of the auditory and extra-auditory brainstem receive only minor projections. The intercollicular zone sends a moderate number of fibers to the DLL and very few, if any, to the remaining auditory brainstem nuclei. In contrast, fairly strong projections from the intercollicular zone to the reticular formation were found. The present data demonstrate that the four subnuclei of the IC have a differential pattern of descending projections to nuclei in the pontine and medullary brainstem. These parallel colliculofugal pathways, assumed to belong to functionally separate circuits, may modulate auditory processing at different levels of the auditory neuraxis.

Original languageEnglish
Pages (from-to)377-392
Number of pages16
JournalJournal of Comparative Neurology
Issue number3
StatePublished - Feb 12 1993
Externally publishedYes



  • cochlear nucleus
  • descending auditory system
  • lateral lemniscus
  • superior olivary complex
  • tonotopic organization

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this