Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects

Jose R. Perez, Dimitrios Kouroupis, Deborah J. Li, Thomas M. Best, Lee Kaplan, Diego Correa

Research output: Contribution to journalReview articlepeer-review

108 Scopus citations

Abstract

Bone fractures and segmental bone defects are a significant source of patient morbidity and place a staggering economic burden on the healthcare system. The annual cost of treating bone defects in the US has been estimated to be $5 billion, while enormous costs are spent on bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. Autologous bone grafts represent the gold standard for the treatment of bone defects. However, they are associated with variable clinical outcomes, postsurgical morbidity, especially at the donor site, and increased surgical costs. In an effort to circumvent these limitations, tissue engineering and cell-based therapies have been proposed as alternatives to induce and promote bone repair. This review focuses on the recent advances in bone tissue engineering (BTE), specifically looking at its role in treating delayed fracture healing (non-unions) and the resulting segmental bone defects. Herein we discuss: (1) the processes of endochondral and intramembranous bone formation; (2) the role of stem cells, looking specifically at mesenchymal (MSC), embryonic (ESC), and induced pluripotent (iPSC) stem cells as viable building blocks to engineer bone implants; (3) the biomaterials used to direct tissue growth, with a focus on ceramic, biodegradable polymers, and composite materials; (4) the growth factors and molecular signals used to induce differentiation of stem cells into the osteoblastic lineage, which ultimately leads to active bone formation; and (5) the mechanical stimulation protocols used to maintain the integrity of the bone repair and their role in successful cell engraftment. Finally, a couple clinical scenarios are presented (non-unions and avascular necrosis—AVN), to illustrate how novel cell-based therapy approaches can be used. A thorough understanding of tissue engineering and cell-based therapies may allow for better incorporation of these potential therapeutic approaches in bone defects allowing for proper bone repair and regeneration.

Original languageEnglish (US)
Article number105
JournalFrontiers in Bioengineering and Biotechnology
Volume6
DOIs
StatePublished - Jul 31 2018

Keywords

  • avascular necrosis
  • biomaterials
  • bone defects
  • fracture repair
  • mechanical stimulation
  • non-union
  • stem cells
  • tissue engineering

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Histology
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects'. Together they form a unique fingerprint.

Cite this