Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean

Sarita Kumari, R. V. Kumaraswamy, Ram Chandra Choudhary, S. S. Sharma, Ajay Pal, Ramesh Raliya, Pratim Biswas, Vinod Saharan

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

An antibacterial and plant growth promoting nanoemulsion was formulated using thymol, an essential oil component of plant and Quillaja saponin, a glycoside surfactant of Quillaja tree. The emulsion was prepared by a sonication method. Fifty minutes of sonication delivered a long term stable thymol nanoemulsion which was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), cryogenic-field emission scanning electron microscopy (Cryo-FESEM) and fourier transform infra-red (FTIR) spectroscopy. Creaming index, pH and dilution stability were also studied for deliberation of its practical applications. The nanoemulsion (0.01-0.06%, v/v) showed substantial in vitro growth inhibition of Xanthomonas axonopodis pv. glycine of soybean (6.7-0.0 log CFU/ml). In pot experiments, seed treatment and foliar application of the nanoemulsion (0.03-0.06%, v/v) significantly lowered the disease severity (DS) (33.3-3.3%) and increased percent efficacy of disease control (PEDC) (54.9-95.4%) of bacterial pustule in soybean caused by X. axonopodis pv. glycine. Subsequently, significant enhancements of plant growth were also recorded in plants treated with thymol nanoemulsion. This is the first report of a thymol based nanoemulsion obtained using Quillaja saponin as a surfactant. Our study claims that nano scale thymol could be a potential antimicrobial and plant growth promoting agent for agriculture.

Original languageEnglish (US)
Article number6650
JournalScientific reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean'. Together they form a unique fingerprint.

Cite this