The source of the high heat and freshwater content of the upper ocean at the SHEBA site in the Beaufort Sea in 1997

David Kadko, Peter K Swart

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Measurements of 7Be and oxygen isotope (18O/16O) ratios from the 1997-1998. SHEBA experiment were used to trace the source of the high heat and freshwater content of the upper ocean observed during the initial occupation of the SHEBA site in October 1997. The evidence suggests that the heating resulted from local input primarily through extended lead coverage in the late spring and summer of 1997 with no requirement of advective input. The freshening was derived from a large ice melt (1.2 m) that was consistent with the thin ice and extensive melt pond coverage (by then frozen) observed at the site. However, a significant contribution to the freshwater budget (0.8 m) included enhanced input from river runoff during the melt season. This obviates the requirement for an unrealistically large ice melt (∼2 m) to account for the freshwater content of the mixed layer, and would have increased the stratification stability of the upper ocean that in turn would have promoted local heating. The question then arises, however, as to the fate of the significant upper ocean heat at SHEBA in the fall 1997 which resulted from an active heating season. Similar evaluation of the fall 1998 SHEBA site indicate that the ice melt was comparable to that of 1997, but the riverine input and stored water column heat were less than in the previous year.

Original languageEnglish (US)
JournalJournal of Geophysical Research C: Oceans
Volume109
Issue number1
StatePublished - Jan 15 2004

Fingerprint

Beaufort Sea (North America)
Ice
upper ocean
oceans
ice
enthalpy
melt
Heating
heating
Oxygen Isotopes
heat
requirements
oxygen isotopes
Ponds
drainage
stratification
Runoff
budgets
rivers
occupation

ASJC Scopus subject areas

  • Oceanography
  • Astronomy and Astrophysics
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)
  • Geophysics
  • Geochemistry and Petrology

Cite this

@article{37a3c07841724c78a2b39e422db16a2a,
title = "The source of the high heat and freshwater content of the upper ocean at the SHEBA site in the Beaufort Sea in 1997",
abstract = "Measurements of 7Be and oxygen isotope (18O/16O) ratios from the 1997-1998. SHEBA experiment were used to trace the source of the high heat and freshwater content of the upper ocean observed during the initial occupation of the SHEBA site in October 1997. The evidence suggests that the heating resulted from local input primarily through extended lead coverage in the late spring and summer of 1997 with no requirement of advective input. The freshening was derived from a large ice melt (1.2 m) that was consistent with the thin ice and extensive melt pond coverage (by then frozen) observed at the site. However, a significant contribution to the freshwater budget (0.8 m) included enhanced input from river runoff during the melt season. This obviates the requirement for an unrealistically large ice melt (∼2 m) to account for the freshwater content of the mixed layer, and would have increased the stratification stability of the upper ocean that in turn would have promoted local heating. The question then arises, however, as to the fate of the significant upper ocean heat at SHEBA in the fall 1997 which resulted from an active heating season. Similar evaluation of the fall 1998 SHEBA site indicate that the ice melt was comparable to that of 1997, but the riverine input and stored water column heat were less than in the previous year.",
author = "David Kadko and Swart, {Peter K}",
year = "2004",
month = "1",
day = "15",
language = "English (US)",
volume = "109",
journal = "Journal of Geophysical Research: Oceans",
issn = "2169-9275",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - The source of the high heat and freshwater content of the upper ocean at the SHEBA site in the Beaufort Sea in 1997

AU - Kadko, David

AU - Swart, Peter K

PY - 2004/1/15

Y1 - 2004/1/15

N2 - Measurements of 7Be and oxygen isotope (18O/16O) ratios from the 1997-1998. SHEBA experiment were used to trace the source of the high heat and freshwater content of the upper ocean observed during the initial occupation of the SHEBA site in October 1997. The evidence suggests that the heating resulted from local input primarily through extended lead coverage in the late spring and summer of 1997 with no requirement of advective input. The freshening was derived from a large ice melt (1.2 m) that was consistent with the thin ice and extensive melt pond coverage (by then frozen) observed at the site. However, a significant contribution to the freshwater budget (0.8 m) included enhanced input from river runoff during the melt season. This obviates the requirement for an unrealistically large ice melt (∼2 m) to account for the freshwater content of the mixed layer, and would have increased the stratification stability of the upper ocean that in turn would have promoted local heating. The question then arises, however, as to the fate of the significant upper ocean heat at SHEBA in the fall 1997 which resulted from an active heating season. Similar evaluation of the fall 1998 SHEBA site indicate that the ice melt was comparable to that of 1997, but the riverine input and stored water column heat were less than in the previous year.

AB - Measurements of 7Be and oxygen isotope (18O/16O) ratios from the 1997-1998. SHEBA experiment were used to trace the source of the high heat and freshwater content of the upper ocean observed during the initial occupation of the SHEBA site in October 1997. The evidence suggests that the heating resulted from local input primarily through extended lead coverage in the late spring and summer of 1997 with no requirement of advective input. The freshening was derived from a large ice melt (1.2 m) that was consistent with the thin ice and extensive melt pond coverage (by then frozen) observed at the site. However, a significant contribution to the freshwater budget (0.8 m) included enhanced input from river runoff during the melt season. This obviates the requirement for an unrealistically large ice melt (∼2 m) to account for the freshwater content of the mixed layer, and would have increased the stratification stability of the upper ocean that in turn would have promoted local heating. The question then arises, however, as to the fate of the significant upper ocean heat at SHEBA in the fall 1997 which resulted from an active heating season. Similar evaluation of the fall 1998 SHEBA site indicate that the ice melt was comparable to that of 1997, but the riverine input and stored water column heat were less than in the previous year.

UR - http://www.scopus.com/inward/record.url?scp=2342611968&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2342611968&partnerID=8YFLogxK

M3 - Article

VL - 109

JO - Journal of Geophysical Research: Oceans

JF - Journal of Geophysical Research: Oceans

SN - 2169-9275

IS - 1

ER -