The sensitivity of simulated shallow cumulus convection and cold pools to microphysics

Zhujun Li, Paquita Zuidema, Ping Zhu, Hugh Morrison

Research output: Contribution to journalArticle

14 Scopus citations

Abstract

The sensitivity of nested WRF simulations of precipitating shallow marine cumuli and cold pools to microphysical parameterization is examined. The simulations differ only in their use of two widely used double-moment rain microphysical schemes: the Thompson and Morrison schemes. Both simulations produce similar mesoscale variability, with the Thompson scheme producing more weak cold pools and the Morrison scheme producing more strong cold pools, which are associated with more intense shallow convection. The most robust difference is that the cloud cover and LWP are significantly larger in the Morrison simulation than in the Thompson simulation. One-dimensional kinematic simulations confirm that dynamical feedbacks do not mask the impact of microphysics. These also help elucidate that a slower autoconversion process along with a stronger accretion process explains the Morrison scheme's higher cloud fraction for a similar rain mixing ratio. Differences in the raindrop terminal fall speed parameters explain the higher evaporation rate of the Thompson scheme at moderate surface rain rates. Given the implications of the cloud-cover differences for the radiative forcing of the expansive trade wind regime, the microphysical scheme should be considered carefully when simulating precipitating shallow marine cumulus.

Original languageEnglish (US)
Pages (from-to)3340-3355
Number of pages16
JournalJournal of the Atmospheric Sciences
Volume72
Issue number9
DOIs
StatePublished - 2015

Keywords

  • Boundary layer
  • Cold pools
  • Cumulus clouds
  • Large eddy simulations
  • Mesoscale models
  • Parameterization

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint Dive into the research topics of 'The sensitivity of simulated shallow cumulus convection and cold pools to microphysics'. Together they form a unique fingerprint.

  • Cite this