The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology

Shao Nian Yang, Per Olof Berggren

Research output: Contribution to journalReview article

160 Scopus citations

Abstract

Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six Ca Vα1 subunits, including CaV1.2, Ca V1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic β-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. β-Cell CaV channels take center stage in insulin secretion and play an important role in β-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse β-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. β-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to β-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of β-cell CaV channels causes β-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in β-cell physiology and pathophysiology.

Original languageEnglish (US)
Pages (from-to)621-676
Number of pages56
JournalEndocrine Reviews
Volume27
Issue number6
DOIs
StatePublished - Oct 23 2006

    Fingerprint

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Endocrinology

Cite this