The Role of the Anion in Salt (NaCl) Detection by Mouse Taste Buds

Jennifer K. Roebber, Stephen D Roper, Nirupa Chaudhari

Research output: Contribution to journalArticle

Abstract

How taste buds detect NaCl remains poorly understood. Among other problems, applying taste-relevant concentrations of NaCl (50-500 mm) onto isolated taste buds or cells exposes them to unphysiological (hypo/hypertonic) conditions. To overcome these limitations, we used the anterior tongue of male and female mice to implement a slice preparation in which fungiform taste buds are in a relatively intact tissue environment and stimuli are limited to the taste pore. Taste-evoked responses were monitored using confocal Ca2+ imaging via GCaMP3 expressed in Type 2 and Type 3 taste bud cells. NaCl evoked intracellular mobilization of Ca2+ in the apical tips of a subset of taste cells. The concentration dependence and rapid adaptation of NaCl-evoked cellular responses closely resembled behavioral and afferent nerve responses to NaCl. Importantly, taste cell responses were not inhibited by the diuretic, amiloride. Post hoc immunostaining revealed that >80% of NaCl-responsive taste bud cells were of Type 2. Many NaCl-responsive cells were also sensitive to stimuli that activate Type 2 cells but never to stimuli for Type 3 cells. Ion substitutions revealed that amiloride-insensitive NaCl responses depended on Cl- rather than Na+ Moreover, choline chloride, an established salt taste enhancer, was equally effective a stimulus as sodium chloride. Although the apical transducer for Cl- remains unknown, blocking known chloride channels and cotransporters had little effect on NaCl responses. Together, our data suggest that chloride, an essential nutrient, is a key determinant of taste transduction for amiloride-insensitive salt taste.SIGNIFICANCE STATEMENT Sodium and chloride are essential nutrients and must be regularly consumed to replace excreted NaCl. Thus, understanding salt taste, which informs salt appetite, is important from a fundamental sensory perspective and forms the basis for interventions to replace/reduce excess Na+ consumption. This study examines responses to NaCl in a semi-intact preparation of mouse taste buds. We identify taste cells that respond to NaCl in the presence of amiloride, which is significant because much of human salt taste also is amiloride-insensitive. Further, we demonstrate that Cl-, not Na+, generates these amiloride-insensitive salt taste responses. Intriguingly, choline chloride, a commercial salt taste enhancer, is also a highly effective stimulus for these cells.

Original languageEnglish (US)
Pages (from-to)6224-6232
Number of pages9
JournalThe Journal of neuroscience : the official journal of the Society for Neuroscience
Volume39
Issue number32
DOIs
StatePublished - Aug 7 2019

Fingerprint

Taste Buds
Anions
Salts
Amiloride
Choline
Sodium Chloride
Food
Chloride Channels
Appetite
Transducers
Tongue
Diuretics

Keywords

  • amiloride
  • Ca2+ imaging
  • fungiform taste bud
  • NaCl
  • sensory transduction
  • taste

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

The Role of the Anion in Salt (NaCl) Detection by Mouse Taste Buds. / Roebber, Jennifer K.; Roper, Stephen D; Chaudhari, Nirupa.

In: The Journal of neuroscience : the official journal of the Society for Neuroscience, Vol. 39, No. 32, 07.08.2019, p. 6224-6232.

Research output: Contribution to journalArticle

@article{f7b8ace1b6ab4b8e8a9c8665f08715b2,
title = "The Role of the Anion in Salt (NaCl) Detection by Mouse Taste Buds",
abstract = "How taste buds detect NaCl remains poorly understood. Among other problems, applying taste-relevant concentrations of NaCl (50-500 mm) onto isolated taste buds or cells exposes them to unphysiological (hypo/hypertonic) conditions. To overcome these limitations, we used the anterior tongue of male and female mice to implement a slice preparation in which fungiform taste buds are in a relatively intact tissue environment and stimuli are limited to the taste pore. Taste-evoked responses were monitored using confocal Ca2+ imaging via GCaMP3 expressed in Type 2 and Type 3 taste bud cells. NaCl evoked intracellular mobilization of Ca2+ in the apical tips of a subset of taste cells. The concentration dependence and rapid adaptation of NaCl-evoked cellular responses closely resembled behavioral and afferent nerve responses to NaCl. Importantly, taste cell responses were not inhibited by the diuretic, amiloride. Post hoc immunostaining revealed that >80{\%} of NaCl-responsive taste bud cells were of Type 2. Many NaCl-responsive cells were also sensitive to stimuli that activate Type 2 cells but never to stimuli for Type 3 cells. Ion substitutions revealed that amiloride-insensitive NaCl responses depended on Cl- rather than Na+ Moreover, choline chloride, an established salt taste enhancer, was equally effective a stimulus as sodium chloride. Although the apical transducer for Cl- remains unknown, blocking known chloride channels and cotransporters had little effect on NaCl responses. Together, our data suggest that chloride, an essential nutrient, is a key determinant of taste transduction for amiloride-insensitive salt taste.SIGNIFICANCE STATEMENT Sodium and chloride are essential nutrients and must be regularly consumed to replace excreted NaCl. Thus, understanding salt taste, which informs salt appetite, is important from a fundamental sensory perspective and forms the basis for interventions to replace/reduce excess Na+ consumption. This study examines responses to NaCl in a semi-intact preparation of mouse taste buds. We identify taste cells that respond to NaCl in the presence of amiloride, which is significant because much of human salt taste also is amiloride-insensitive. Further, we demonstrate that Cl-, not Na+, generates these amiloride-insensitive salt taste responses. Intriguingly, choline chloride, a commercial salt taste enhancer, is also a highly effective stimulus for these cells.",
keywords = "amiloride, Ca2+ imaging, fungiform taste bud, NaCl, sensory transduction, taste",
author = "Roebber, {Jennifer K.} and Roper, {Stephen D} and Nirupa Chaudhari",
year = "2019",
month = "8",
day = "7",
doi = "10.1523/JNEUROSCI.2367-18.2019",
language = "English (US)",
volume = "39",
pages = "6224--6232",
journal = "Journal of Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "32",

}

TY - JOUR

T1 - The Role of the Anion in Salt (NaCl) Detection by Mouse Taste Buds

AU - Roebber, Jennifer K.

AU - Roper, Stephen D

AU - Chaudhari, Nirupa

PY - 2019/8/7

Y1 - 2019/8/7

N2 - How taste buds detect NaCl remains poorly understood. Among other problems, applying taste-relevant concentrations of NaCl (50-500 mm) onto isolated taste buds or cells exposes them to unphysiological (hypo/hypertonic) conditions. To overcome these limitations, we used the anterior tongue of male and female mice to implement a slice preparation in which fungiform taste buds are in a relatively intact tissue environment and stimuli are limited to the taste pore. Taste-evoked responses were monitored using confocal Ca2+ imaging via GCaMP3 expressed in Type 2 and Type 3 taste bud cells. NaCl evoked intracellular mobilization of Ca2+ in the apical tips of a subset of taste cells. The concentration dependence and rapid adaptation of NaCl-evoked cellular responses closely resembled behavioral and afferent nerve responses to NaCl. Importantly, taste cell responses were not inhibited by the diuretic, amiloride. Post hoc immunostaining revealed that >80% of NaCl-responsive taste bud cells were of Type 2. Many NaCl-responsive cells were also sensitive to stimuli that activate Type 2 cells but never to stimuli for Type 3 cells. Ion substitutions revealed that amiloride-insensitive NaCl responses depended on Cl- rather than Na+ Moreover, choline chloride, an established salt taste enhancer, was equally effective a stimulus as sodium chloride. Although the apical transducer for Cl- remains unknown, blocking known chloride channels and cotransporters had little effect on NaCl responses. Together, our data suggest that chloride, an essential nutrient, is a key determinant of taste transduction for amiloride-insensitive salt taste.SIGNIFICANCE STATEMENT Sodium and chloride are essential nutrients and must be regularly consumed to replace excreted NaCl. Thus, understanding salt taste, which informs salt appetite, is important from a fundamental sensory perspective and forms the basis for interventions to replace/reduce excess Na+ consumption. This study examines responses to NaCl in a semi-intact preparation of mouse taste buds. We identify taste cells that respond to NaCl in the presence of amiloride, which is significant because much of human salt taste also is amiloride-insensitive. Further, we demonstrate that Cl-, not Na+, generates these amiloride-insensitive salt taste responses. Intriguingly, choline chloride, a commercial salt taste enhancer, is also a highly effective stimulus for these cells.

AB - How taste buds detect NaCl remains poorly understood. Among other problems, applying taste-relevant concentrations of NaCl (50-500 mm) onto isolated taste buds or cells exposes them to unphysiological (hypo/hypertonic) conditions. To overcome these limitations, we used the anterior tongue of male and female mice to implement a slice preparation in which fungiform taste buds are in a relatively intact tissue environment and stimuli are limited to the taste pore. Taste-evoked responses were monitored using confocal Ca2+ imaging via GCaMP3 expressed in Type 2 and Type 3 taste bud cells. NaCl evoked intracellular mobilization of Ca2+ in the apical tips of a subset of taste cells. The concentration dependence and rapid adaptation of NaCl-evoked cellular responses closely resembled behavioral and afferent nerve responses to NaCl. Importantly, taste cell responses were not inhibited by the diuretic, amiloride. Post hoc immunostaining revealed that >80% of NaCl-responsive taste bud cells were of Type 2. Many NaCl-responsive cells were also sensitive to stimuli that activate Type 2 cells but never to stimuli for Type 3 cells. Ion substitutions revealed that amiloride-insensitive NaCl responses depended on Cl- rather than Na+ Moreover, choline chloride, an established salt taste enhancer, was equally effective a stimulus as sodium chloride. Although the apical transducer for Cl- remains unknown, blocking known chloride channels and cotransporters had little effect on NaCl responses. Together, our data suggest that chloride, an essential nutrient, is a key determinant of taste transduction for amiloride-insensitive salt taste.SIGNIFICANCE STATEMENT Sodium and chloride are essential nutrients and must be regularly consumed to replace excreted NaCl. Thus, understanding salt taste, which informs salt appetite, is important from a fundamental sensory perspective and forms the basis for interventions to replace/reduce excess Na+ consumption. This study examines responses to NaCl in a semi-intact preparation of mouse taste buds. We identify taste cells that respond to NaCl in the presence of amiloride, which is significant because much of human salt taste also is amiloride-insensitive. Further, we demonstrate that Cl-, not Na+, generates these amiloride-insensitive salt taste responses. Intriguingly, choline chloride, a commercial salt taste enhancer, is also a highly effective stimulus for these cells.

KW - amiloride

KW - Ca2+ imaging

KW - fungiform taste bud

KW - NaCl

KW - sensory transduction

KW - taste

UR - http://www.scopus.com/inward/record.url?scp=85071346604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071346604&partnerID=8YFLogxK

U2 - 10.1523/JNEUROSCI.2367-18.2019

DO - 10.1523/JNEUROSCI.2367-18.2019

M3 - Article

VL - 39

SP - 6224

EP - 6232

JO - Journal of Neuroscience

JF - Journal of Neuroscience

SN - 0270-6474

IS - 32

ER -