The role of fatty acids and caveolin-1 in tumor necrosis factor α-induced endothelial cell activation

Lei Wang, Eun Jin Lim, Michal J Toborek, Bernhard Hennig

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Hypertriglyceridemia and associated high circulating free fatty acids are important risk factors for atherosclerosis. In contrast to omega-3 fatty acids, linoleic acid, the major omega-6 unsaturated fatty acid in the American diet, may be atherogenic by amplifying an endothelial inflammatory response. We hypothesize that omega-6 and omega-3 fatty acids can differentially modulate tumor necrosis factor α (TNF-α)-induced endothelial cell activation and that functional plasma membrane microdomains called caveolae are required for endothelial cell activation. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. To test our hypothesis, endothelial cells were preenriched with either linoleic acid or α-linolenic acid before TNF-α-induced endothelial activation. Measurements included oxidative stress and nuclear factor κB-dependent induction of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) under experimental conditions with intact caveolae and with cells in which caveolin-1 was silenced by small interfering RNA. Exposure to TNF-α induced oxidative stress and inflammatory mediators, such as p38 mitogen-activated protein kinase (MAPK), nuclear factor κB, COX-2, and PGE2, which were all amplified by preenrichment with linoleic acid but blocked or reduced by α-linolenic acid. The p38 MAPK inhibitor SB203580 blocked TNF-α-mediated induction of COX-2 protein expression, suggesting a regulatory mechanism through p38 MAPK signaling. Image overlay demonstrated TNF-α-induced colocalization of TNF receptor type 1 with caveolin-1. Caveolin-1 was significantly induced by TNF-α, which was further amplified by linoleic acid and blocked by α-linolenic acid. Furthermore, silencing of the caveolin-1 gene completely blocked TNF-α-induced production of COX-2 and PGE2 and significantly reduced the amplified response of linoleic acid plus TNF-α. These data suggest that omega-6 and omega-3 fatty acids can differentially modulate TNF-α-induced inflammatory stimuli and that caveolae and its fatty acid composition play a regulatory role during TNF-α-induced endothelial cell activation and inflammation.

Original languageEnglish
Pages (from-to)1328-1339
Number of pages12
JournalMetabolism: Clinical and Experimental
Volume57
Issue number10
DOIs
StatePublished - Oct 1 2008
Externally publishedYes

Fingerprint

Caveolin 1
Fatty Acids
Endothelial Cells
Tumor Necrosis Factor-alpha
Caveolae
Cyclooxygenase 2
Omega-3 Fatty Acids
p38 Mitogen-Activated Protein Kinases
Linoleic Acid
Dinoprostone
Oxidative Stress
Omega-6 Fatty Acids
Membrane Microdomains
alpha-Linolenic Acid
Tumor Necrosis Factor Receptors
Hypertriglyceridemia
Protein Kinase Inhibitors
Unsaturated Fatty Acids
Vascular Diseases
Nonesterified Fatty Acids

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism

Cite this

The role of fatty acids and caveolin-1 in tumor necrosis factor α-induced endothelial cell activation. / Wang, Lei; Lim, Eun Jin; Toborek, Michal J; Hennig, Bernhard.

In: Metabolism: Clinical and Experimental, Vol. 57, No. 10, 01.10.2008, p. 1328-1339.

Research output: Contribution to journalArticle

@article{d714433b69ab403fb76ebedc606df5f1,
title = "The role of fatty acids and caveolin-1 in tumor necrosis factor α-induced endothelial cell activation",
abstract = "Hypertriglyceridemia and associated high circulating free fatty acids are important risk factors for atherosclerosis. In contrast to omega-3 fatty acids, linoleic acid, the major omega-6 unsaturated fatty acid in the American diet, may be atherogenic by amplifying an endothelial inflammatory response. We hypothesize that omega-6 and omega-3 fatty acids can differentially modulate tumor necrosis factor α (TNF-α)-induced endothelial cell activation and that functional plasma membrane microdomains called caveolae are required for endothelial cell activation. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. To test our hypothesis, endothelial cells were preenriched with either linoleic acid or α-linolenic acid before TNF-α-induced endothelial activation. Measurements included oxidative stress and nuclear factor κB-dependent induction of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) under experimental conditions with intact caveolae and with cells in which caveolin-1 was silenced by small interfering RNA. Exposure to TNF-α induced oxidative stress and inflammatory mediators, such as p38 mitogen-activated protein kinase (MAPK), nuclear factor κB, COX-2, and PGE2, which were all amplified by preenrichment with linoleic acid but blocked or reduced by α-linolenic acid. The p38 MAPK inhibitor SB203580 blocked TNF-α-mediated induction of COX-2 protein expression, suggesting a regulatory mechanism through p38 MAPK signaling. Image overlay demonstrated TNF-α-induced colocalization of TNF receptor type 1 with caveolin-1. Caveolin-1 was significantly induced by TNF-α, which was further amplified by linoleic acid and blocked by α-linolenic acid. Furthermore, silencing of the caveolin-1 gene completely blocked TNF-α-induced production of COX-2 and PGE2 and significantly reduced the amplified response of linoleic acid plus TNF-α. These data suggest that omega-6 and omega-3 fatty acids can differentially modulate TNF-α-induced inflammatory stimuli and that caveolae and its fatty acid composition play a regulatory role during TNF-α-induced endothelial cell activation and inflammation.",
author = "Lei Wang and Lim, {Eun Jin} and Toborek, {Michal J} and Bernhard Hennig",
year = "2008",
month = "10",
day = "1",
doi = "10.1016/j.metabol.2008.01.036",
language = "English",
volume = "57",
pages = "1328--1339",
journal = "Metabolism: Clinical and Experimental",
issn = "0026-0495",
publisher = "W.B. Saunders Ltd",
number = "10",

}

TY - JOUR

T1 - The role of fatty acids and caveolin-1 in tumor necrosis factor α-induced endothelial cell activation

AU - Wang, Lei

AU - Lim, Eun Jin

AU - Toborek, Michal J

AU - Hennig, Bernhard

PY - 2008/10/1

Y1 - 2008/10/1

N2 - Hypertriglyceridemia and associated high circulating free fatty acids are important risk factors for atherosclerosis. In contrast to omega-3 fatty acids, linoleic acid, the major omega-6 unsaturated fatty acid in the American diet, may be atherogenic by amplifying an endothelial inflammatory response. We hypothesize that omega-6 and omega-3 fatty acids can differentially modulate tumor necrosis factor α (TNF-α)-induced endothelial cell activation and that functional plasma membrane microdomains called caveolae are required for endothelial cell activation. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. To test our hypothesis, endothelial cells were preenriched with either linoleic acid or α-linolenic acid before TNF-α-induced endothelial activation. Measurements included oxidative stress and nuclear factor κB-dependent induction of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) under experimental conditions with intact caveolae and with cells in which caveolin-1 was silenced by small interfering RNA. Exposure to TNF-α induced oxidative stress and inflammatory mediators, such as p38 mitogen-activated protein kinase (MAPK), nuclear factor κB, COX-2, and PGE2, which were all amplified by preenrichment with linoleic acid but blocked or reduced by α-linolenic acid. The p38 MAPK inhibitor SB203580 blocked TNF-α-mediated induction of COX-2 protein expression, suggesting a regulatory mechanism through p38 MAPK signaling. Image overlay demonstrated TNF-α-induced colocalization of TNF receptor type 1 with caveolin-1. Caveolin-1 was significantly induced by TNF-α, which was further amplified by linoleic acid and blocked by α-linolenic acid. Furthermore, silencing of the caveolin-1 gene completely blocked TNF-α-induced production of COX-2 and PGE2 and significantly reduced the amplified response of linoleic acid plus TNF-α. These data suggest that omega-6 and omega-3 fatty acids can differentially modulate TNF-α-induced inflammatory stimuli and that caveolae and its fatty acid composition play a regulatory role during TNF-α-induced endothelial cell activation and inflammation.

AB - Hypertriglyceridemia and associated high circulating free fatty acids are important risk factors for atherosclerosis. In contrast to omega-3 fatty acids, linoleic acid, the major omega-6 unsaturated fatty acid in the American diet, may be atherogenic by amplifying an endothelial inflammatory response. We hypothesize that omega-6 and omega-3 fatty acids can differentially modulate tumor necrosis factor α (TNF-α)-induced endothelial cell activation and that functional plasma membrane microdomains called caveolae are required for endothelial cell activation. Caveolae are particularly abundant in endothelial cells and play a major role in endothelial trafficking and the regulation of signaling pathways associated with the pathology of vascular diseases. To test our hypothesis, endothelial cells were preenriched with either linoleic acid or α-linolenic acid before TNF-α-induced endothelial activation. Measurements included oxidative stress and nuclear factor κB-dependent induction of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) under experimental conditions with intact caveolae and with cells in which caveolin-1 was silenced by small interfering RNA. Exposure to TNF-α induced oxidative stress and inflammatory mediators, such as p38 mitogen-activated protein kinase (MAPK), nuclear factor κB, COX-2, and PGE2, which were all amplified by preenrichment with linoleic acid but blocked or reduced by α-linolenic acid. The p38 MAPK inhibitor SB203580 blocked TNF-α-mediated induction of COX-2 protein expression, suggesting a regulatory mechanism through p38 MAPK signaling. Image overlay demonstrated TNF-α-induced colocalization of TNF receptor type 1 with caveolin-1. Caveolin-1 was significantly induced by TNF-α, which was further amplified by linoleic acid and blocked by α-linolenic acid. Furthermore, silencing of the caveolin-1 gene completely blocked TNF-α-induced production of COX-2 and PGE2 and significantly reduced the amplified response of linoleic acid plus TNF-α. These data suggest that omega-6 and omega-3 fatty acids can differentially modulate TNF-α-induced inflammatory stimuli and that caveolae and its fatty acid composition play a regulatory role during TNF-α-induced endothelial cell activation and inflammation.

UR - http://www.scopus.com/inward/record.url?scp=51649107075&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=51649107075&partnerID=8YFLogxK

U2 - 10.1016/j.metabol.2008.01.036

DO - 10.1016/j.metabol.2008.01.036

M3 - Article

C2 - 18803934

AN - SCOPUS:51649107075

VL - 57

SP - 1328

EP - 1339

JO - Metabolism: Clinical and Experimental

JF - Metabolism: Clinical and Experimental

SN - 0026-0495

IS - 10

ER -