The mechanism of the slippage approach to rotaxanes. Origin of the 'all- or-nothing' substituent effect

Francisco Raymo, K. N. Houk, J. Fraser Stoddart

Research output: Contribution to journalArticle

122 Citations (Scopus)

Abstract

Heating a solution of the circular bis-p-phenylene-34-crown-10 and a dumbbell-shaped bipyridinium component, terminated at both ends by 4-R- phenyl-bis(4-tert-butyl-phenyl)methane-based stoppers, affords the corresponding [2]rotaxane when R is equal to H, Me, and Et, following the slippage of the macrocycle over the stoppers of the dumbbell. By contrast, no [2]rotaxane is obtained when R is equal to i-Pr. Computational investigations with the AMBER* force field provide an explanation of this dramatic substitutent effect. The phenomenon was simulated by the passage of the bis- p-phenylene-34-crown-10 macrocycle over four 4-R-phenyl-bis(4-tert-butyl- phenyl)methane model stoppers. For R equal to H, Me, Et, and i-Pr, there are two main energy barriers which have to be surpassed in order to permit the passage of the macrocycle over the bulky stoppers. When R is equal to H or Me, the rate-determining step is the passage of the macrocycle over a t-Bu- C6H4- ring. By contrast, when R is equal to Et or i-Pr, the rate- determining step becomes the passage of the macrocycle over the R-C6H4- ring. However, when R is equal to i-Pr, the resulting energy barrier is more than 21 kcal mol-1 higher than in the case of any of the other stoppers. These results are in good agreement with the experimental observations and provide a quantitative explanation for the rigorous size complementarily requirements between macrocycle and stopper which have been observed experimentally.

Original languageEnglish
Pages (from-to)9318-9322
Number of pages5
JournalJournal of the American Chemical Society
Volume120
Issue number36
DOIs
StatePublished - Sep 16 1998
Externally publishedYes

Fingerprint

Rotaxanes
Energy barriers
Methane
Heating

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

The mechanism of the slippage approach to rotaxanes. Origin of the 'all- or-nothing' substituent effect. / Raymo, Francisco; Houk, K. N.; Stoddart, J. Fraser.

In: Journal of the American Chemical Society, Vol. 120, No. 36, 16.09.1998, p. 9318-9322.

Research output: Contribution to journalArticle

@article{47f9e2d2cbad4a87859c5bd63be22c21,
title = "The mechanism of the slippage approach to rotaxanes. Origin of the 'all- or-nothing' substituent effect",
abstract = "Heating a solution of the circular bis-p-phenylene-34-crown-10 and a dumbbell-shaped bipyridinium component, terminated at both ends by 4-R- phenyl-bis(4-tert-butyl-phenyl)methane-based stoppers, affords the corresponding [2]rotaxane when R is equal to H, Me, and Et, following the slippage of the macrocycle over the stoppers of the dumbbell. By contrast, no [2]rotaxane is obtained when R is equal to i-Pr. Computational investigations with the AMBER* force field provide an explanation of this dramatic substitutent effect. The phenomenon was simulated by the passage of the bis- p-phenylene-34-crown-10 macrocycle over four 4-R-phenyl-bis(4-tert-butyl- phenyl)methane model stoppers. For R equal to H, Me, Et, and i-Pr, there are two main energy barriers which have to be surpassed in order to permit the passage of the macrocycle over the bulky stoppers. When R is equal to H or Me, the rate-determining step is the passage of the macrocycle over a t-Bu- C6H4- ring. By contrast, when R is equal to Et or i-Pr, the rate- determining step becomes the passage of the macrocycle over the R-C6H4- ring. However, when R is equal to i-Pr, the resulting energy barrier is more than 21 kcal mol-1 higher than in the case of any of the other stoppers. These results are in good agreement with the experimental observations and provide a quantitative explanation for the rigorous size complementarily requirements between macrocycle and stopper which have been observed experimentally.",
author = "Francisco Raymo and Houk, {K. N.} and Stoddart, {J. Fraser}",
year = "1998",
month = "9",
day = "16",
doi = "10.1021/ja9806229",
language = "English",
volume = "120",
pages = "9318--9322",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "36",

}

TY - JOUR

T1 - The mechanism of the slippage approach to rotaxanes. Origin of the 'all- or-nothing' substituent effect

AU - Raymo, Francisco

AU - Houk, K. N.

AU - Stoddart, J. Fraser

PY - 1998/9/16

Y1 - 1998/9/16

N2 - Heating a solution of the circular bis-p-phenylene-34-crown-10 and a dumbbell-shaped bipyridinium component, terminated at both ends by 4-R- phenyl-bis(4-tert-butyl-phenyl)methane-based stoppers, affords the corresponding [2]rotaxane when R is equal to H, Me, and Et, following the slippage of the macrocycle over the stoppers of the dumbbell. By contrast, no [2]rotaxane is obtained when R is equal to i-Pr. Computational investigations with the AMBER* force field provide an explanation of this dramatic substitutent effect. The phenomenon was simulated by the passage of the bis- p-phenylene-34-crown-10 macrocycle over four 4-R-phenyl-bis(4-tert-butyl- phenyl)methane model stoppers. For R equal to H, Me, Et, and i-Pr, there are two main energy barriers which have to be surpassed in order to permit the passage of the macrocycle over the bulky stoppers. When R is equal to H or Me, the rate-determining step is the passage of the macrocycle over a t-Bu- C6H4- ring. By contrast, when R is equal to Et or i-Pr, the rate- determining step becomes the passage of the macrocycle over the R-C6H4- ring. However, when R is equal to i-Pr, the resulting energy barrier is more than 21 kcal mol-1 higher than in the case of any of the other stoppers. These results are in good agreement with the experimental observations and provide a quantitative explanation for the rigorous size complementarily requirements between macrocycle and stopper which have been observed experimentally.

AB - Heating a solution of the circular bis-p-phenylene-34-crown-10 and a dumbbell-shaped bipyridinium component, terminated at both ends by 4-R- phenyl-bis(4-tert-butyl-phenyl)methane-based stoppers, affords the corresponding [2]rotaxane when R is equal to H, Me, and Et, following the slippage of the macrocycle over the stoppers of the dumbbell. By contrast, no [2]rotaxane is obtained when R is equal to i-Pr. Computational investigations with the AMBER* force field provide an explanation of this dramatic substitutent effect. The phenomenon was simulated by the passage of the bis- p-phenylene-34-crown-10 macrocycle over four 4-R-phenyl-bis(4-tert-butyl- phenyl)methane model stoppers. For R equal to H, Me, Et, and i-Pr, there are two main energy barriers which have to be surpassed in order to permit the passage of the macrocycle over the bulky stoppers. When R is equal to H or Me, the rate-determining step is the passage of the macrocycle over a t-Bu- C6H4- ring. By contrast, when R is equal to Et or i-Pr, the rate- determining step becomes the passage of the macrocycle over the R-C6H4- ring. However, when R is equal to i-Pr, the resulting energy barrier is more than 21 kcal mol-1 higher than in the case of any of the other stoppers. These results are in good agreement with the experimental observations and provide a quantitative explanation for the rigorous size complementarily requirements between macrocycle and stopper which have been observed experimentally.

UR - http://www.scopus.com/inward/record.url?scp=0032538060&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032538060&partnerID=8YFLogxK

U2 - 10.1021/ja9806229

DO - 10.1021/ja9806229

M3 - Article

AN - SCOPUS:0032538060

VL - 120

SP - 9318

EP - 9322

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 36

ER -