The impact of retardance pattern variability on nerve fiber layer Measurements over time using GDx with variable and enhanced corneal compensation

Dilraj S. Grewal, Mitra Sehi, Richard J. Cook, David Greenfield

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Purpose. To examine the impact of retardance pattern variability on retinal nerve fiber layer (RNFL) measurements over time using scanning laser polarimetry with variable (GDxVCC) and enhanced corneal compensation (GDxECC; both by Carl Zeiss Meditec, Inc., Dublin, CA). Methods. Glaucoma suspect and glaucomatous eyes with 4 years of follow-up participating in the Advanced Imaging in Glaucoma Study were prospectively enrolled. All eyes underwent standard automated perimetry (SAP), GDxVCC, and GDxECC imaging every 6 months. SAP progression was determined with point-wise linear regression analysis of SAP sensitivity values. Typical scan score (TSS) values were extracted as a measure of retardance image quality; an atypical retardation pattern (ARP) was defined as TSS < 80. TSS fluctuation over time was measured using three parameters: change in TSS from baseline, absolute difference (maximum minus minimum TSS value), and TSS variance. Linear mixed-effects models that accommodated the association between the two eyes were constructed to evaluate the relationship between change in TSS and RNFL thickness over time. Results. Eighty-six eyes (51 suspected glaucoma, 35 glaucomatous) of 45 patients were enrolled. Twenty (23.3%) eyes demonstrated SAP progression. There was significantly greater fluctuation in TSS over time with GDxVCC compared with GDxECC as measured by absolute difference (18.40 ± 15.35 units vs. 2.50 ± 4.69 units; P < 0.001), TSS variance (59.63 ± 87.27 units vs. 3.82 ± 9.63 units, P < 0.001), and change in TSS from baseline (-0.83 ± 11.2 vs. 0.25 ± 2.9, P = 0.01). The change in TSS over time significantly (P = 0.006) influenced the TSNIT average RNFL thickness when measured by GDxVCC but not by GDxECC. Conclusions. Longitudinal images obtained with GDxECC have significantly less variability in TSS and retardance patterns and have reduced bias produced by ARP on RNFL progression assessment.

Original languageEnglish
Pages (from-to)4516-4524
Number of pages9
JournalInvestigative Ophthalmology and Visual Science
Volume52
Issue number7
DOIs
StatePublished - Jun 1 2011

Fingerprint

Nerve Fibers
Visual Field Tests
Glaucoma
Scanning Laser Polarimetry
Ocular Hypertension
Linear Models
Regression Analysis

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience
  • Medicine(all)

Cite this

The impact of retardance pattern variability on nerve fiber layer Measurements over time using GDx with variable and enhanced corneal compensation. / Grewal, Dilraj S.; Sehi, Mitra; Cook, Richard J.; Greenfield, David.

In: Investigative Ophthalmology and Visual Science, Vol. 52, No. 7, 01.06.2011, p. 4516-4524.

Research output: Contribution to journalArticle

@article{ed560372efc6466ea0f78304f1d8da81,
title = "The impact of retardance pattern variability on nerve fiber layer Measurements over time using GDx with variable and enhanced corneal compensation",
abstract = "Purpose. To examine the impact of retardance pattern variability on retinal nerve fiber layer (RNFL) measurements over time using scanning laser polarimetry with variable (GDxVCC) and enhanced corneal compensation (GDxECC; both by Carl Zeiss Meditec, Inc., Dublin, CA). Methods. Glaucoma suspect and glaucomatous eyes with 4 years of follow-up participating in the Advanced Imaging in Glaucoma Study were prospectively enrolled. All eyes underwent standard automated perimetry (SAP), GDxVCC, and GDxECC imaging every 6 months. SAP progression was determined with point-wise linear regression analysis of SAP sensitivity values. Typical scan score (TSS) values were extracted as a measure of retardance image quality; an atypical retardation pattern (ARP) was defined as TSS < 80. TSS fluctuation over time was measured using three parameters: change in TSS from baseline, absolute difference (maximum minus minimum TSS value), and TSS variance. Linear mixed-effects models that accommodated the association between the two eyes were constructed to evaluate the relationship between change in TSS and RNFL thickness over time. Results. Eighty-six eyes (51 suspected glaucoma, 35 glaucomatous) of 45 patients were enrolled. Twenty (23.3{\%}) eyes demonstrated SAP progression. There was significantly greater fluctuation in TSS over time with GDxVCC compared with GDxECC as measured by absolute difference (18.40 ± 15.35 units vs. 2.50 ± 4.69 units; P < 0.001), TSS variance (59.63 ± 87.27 units vs. 3.82 ± 9.63 units, P < 0.001), and change in TSS from baseline (-0.83 ± 11.2 vs. 0.25 ± 2.9, P = 0.01). The change in TSS over time significantly (P = 0.006) influenced the TSNIT average RNFL thickness when measured by GDxVCC but not by GDxECC. Conclusions. Longitudinal images obtained with GDxECC have significantly less variability in TSS and retardance patterns and have reduced bias produced by ARP on RNFL progression assessment.",
author = "Grewal, {Dilraj S.} and Mitra Sehi and Cook, {Richard J.} and David Greenfield",
year = "2011",
month = "6",
day = "1",
doi = "10.1167/iovs.10-5969",
language = "English",
volume = "52",
pages = "4516--4524",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "7",

}

TY - JOUR

T1 - The impact of retardance pattern variability on nerve fiber layer Measurements over time using GDx with variable and enhanced corneal compensation

AU - Grewal, Dilraj S.

AU - Sehi, Mitra

AU - Cook, Richard J.

AU - Greenfield, David

PY - 2011/6/1

Y1 - 2011/6/1

N2 - Purpose. To examine the impact of retardance pattern variability on retinal nerve fiber layer (RNFL) measurements over time using scanning laser polarimetry with variable (GDxVCC) and enhanced corneal compensation (GDxECC; both by Carl Zeiss Meditec, Inc., Dublin, CA). Methods. Glaucoma suspect and glaucomatous eyes with 4 years of follow-up participating in the Advanced Imaging in Glaucoma Study were prospectively enrolled. All eyes underwent standard automated perimetry (SAP), GDxVCC, and GDxECC imaging every 6 months. SAP progression was determined with point-wise linear regression analysis of SAP sensitivity values. Typical scan score (TSS) values were extracted as a measure of retardance image quality; an atypical retardation pattern (ARP) was defined as TSS < 80. TSS fluctuation over time was measured using three parameters: change in TSS from baseline, absolute difference (maximum minus minimum TSS value), and TSS variance. Linear mixed-effects models that accommodated the association between the two eyes were constructed to evaluate the relationship between change in TSS and RNFL thickness over time. Results. Eighty-six eyes (51 suspected glaucoma, 35 glaucomatous) of 45 patients were enrolled. Twenty (23.3%) eyes demonstrated SAP progression. There was significantly greater fluctuation in TSS over time with GDxVCC compared with GDxECC as measured by absolute difference (18.40 ± 15.35 units vs. 2.50 ± 4.69 units; P < 0.001), TSS variance (59.63 ± 87.27 units vs. 3.82 ± 9.63 units, P < 0.001), and change in TSS from baseline (-0.83 ± 11.2 vs. 0.25 ± 2.9, P = 0.01). The change in TSS over time significantly (P = 0.006) influenced the TSNIT average RNFL thickness when measured by GDxVCC but not by GDxECC. Conclusions. Longitudinal images obtained with GDxECC have significantly less variability in TSS and retardance patterns and have reduced bias produced by ARP on RNFL progression assessment.

AB - Purpose. To examine the impact of retardance pattern variability on retinal nerve fiber layer (RNFL) measurements over time using scanning laser polarimetry with variable (GDxVCC) and enhanced corneal compensation (GDxECC; both by Carl Zeiss Meditec, Inc., Dublin, CA). Methods. Glaucoma suspect and glaucomatous eyes with 4 years of follow-up participating in the Advanced Imaging in Glaucoma Study were prospectively enrolled. All eyes underwent standard automated perimetry (SAP), GDxVCC, and GDxECC imaging every 6 months. SAP progression was determined with point-wise linear regression analysis of SAP sensitivity values. Typical scan score (TSS) values were extracted as a measure of retardance image quality; an atypical retardation pattern (ARP) was defined as TSS < 80. TSS fluctuation over time was measured using three parameters: change in TSS from baseline, absolute difference (maximum minus minimum TSS value), and TSS variance. Linear mixed-effects models that accommodated the association between the two eyes were constructed to evaluate the relationship between change in TSS and RNFL thickness over time. Results. Eighty-six eyes (51 suspected glaucoma, 35 glaucomatous) of 45 patients were enrolled. Twenty (23.3%) eyes demonstrated SAP progression. There was significantly greater fluctuation in TSS over time with GDxVCC compared with GDxECC as measured by absolute difference (18.40 ± 15.35 units vs. 2.50 ± 4.69 units; P < 0.001), TSS variance (59.63 ± 87.27 units vs. 3.82 ± 9.63 units, P < 0.001), and change in TSS from baseline (-0.83 ± 11.2 vs. 0.25 ± 2.9, P = 0.01). The change in TSS over time significantly (P = 0.006) influenced the TSNIT average RNFL thickness when measured by GDxVCC but not by GDxECC. Conclusions. Longitudinal images obtained with GDxECC have significantly less variability in TSS and retardance patterns and have reduced bias produced by ARP on RNFL progression assessment.

UR - http://www.scopus.com/inward/record.url?scp=80052389532&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052389532&partnerID=8YFLogxK

U2 - 10.1167/iovs.10-5969

DO - 10.1167/iovs.10-5969

M3 - Article

C2 - 21296821

AN - SCOPUS:80052389532

VL - 52

SP - 4516

EP - 4524

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 7

ER -