The electrophysiological actions of neurotensin in the central nervous system

Zachary N. Stowe, Charles B. Nemeroff

Research output: Contribution to journalShort surveypeer-review

41 Scopus citations


The endogenous neuropeptide, neurotensin (NT) alters the firing frequencies of certain neurons in the central nervous system (CNS). This is one of the findings that support the hypothesis that NT is a neurotransmitter substance. The direct application of NT on CNS neurons causes predominantly excitatory effects. These effects occur in a dose-related fashion via a calcium-dependent postsynaptic mechanism. The C-terminal hexapeptide fragment, NT 8-13 exerts similar electrophysiological effects to NT, while the N-terminal octapeptide fragment, NT 1-8 is devoid of such activity. NT produces a significant increase in the firing rates of individual neurons in the substantia nigra (SN), ventral tegmental area (VTA), medial prefrontal cortex (MPF), hypothalamus, and periacqueductal grey (PAG). This excitation occurs with a rapid onset and is readily reversible after cessation of NT application. In contrast, NT has no effect or weak inhibitory effects on the firing rates of neurons in the locus coeruleus (LC) and cerebellum. These electrophysiological actions of NT appear to be unique and not shared by other neurotransmitter and neuropeptide receptor anta-gonists and agonists that have been studied via direct co-application. NT attenuates dopamine (DA)-induced inhibition associated with direct application onto neurons in the SN and VTA both in vivo and in vitro. Intracellular recordings suggest that direct application of higher concentrations of NT appears to produce 'depolarization block' on individual neurons in the SN, VTA, MPF, and hypothalamus. The electrophysiological consequences of NT application not only show similarities to clinically efficacious antipsychotic medications, but also demonstrate the ability of NT to modulate the activity of dopamine (DA) neurons at the cellular level via specific NT binding sites. These findings further underscore the possibility that NT may play a pre-eminent role in the pathogenesis of, and psychopharmacological management of neurological and psychiatric disorders purportedly related to perturbation of CNS DA systems including schizophrenia.

Original languageEnglish (US)
Pages (from-to)987-1002
Number of pages16
JournalLife Sciences
Issue number14
StatePublished - 1991
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)


Dive into the research topics of 'The electrophysiological actions of neurotensin in the central nervous system'. Together they form a unique fingerprint.

Cite this