The Benefits and Tradeoffs for Varied High-Severity Injury Risk Thresholds for Advanced Automatic Crash Notification Systems

George Bahouth, Jill Graygo, Kennerly Digges, Carl Schulman, Peter Baur

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Results: Within the population of seriously injured (i.e., those having one or more AIS 3 or higher injuries), the number of occupants whose injury risk did not exceed the 10% and 20% thresholds were estimated to be 11,700 and 18,600, respectively, each year using the MAIS 3+ injury model. For the ISS > 15 model, 8,100 and 11,000 occupants sustained ISS > 15 injuries yet their injury probability did not reach the 10% and 20% probability for severe injury respectively. Conversely, model predictions suggested that, at the 10% and 20% thresholds, 207,700 and 55,400 drivers respectively would be incorrectly flagged as injured when their injuries had not reached the AIS 3 level. For the ISS > 15 model, 87,300 and 41,900 drivers would be incorrectly flagged as injured when injury severity had not reached the ISS > 15 injury level.

Conclusions: This article provides important information comparing the expected positive and negative effects of an AACN system with thresholds at the 10% and 20% levels using 2 outcome metrics. Overall, results suggest that the 20% risk threshold would not provide a useful notification to improve the quality of care for a large number of seriously injured crash victims. Alternately, a lower threshold may increase the over triage rate. Based on the vehicle damage observed for crashes reaching and exceeding the 10% risk threshold, we anticipate that rescue services would have been deployed based on current Public Safety Answering Point (PSAP) practices.

Methods: Binary logistic regression analysis was performed to predict the occurrence of motor vehicle crash injuries at both the ISS > 15 and Maximum Abbreviated Injury Scale (MAIS) 3+ level. Models were trained using crash characteristics recommended by the CDC Committee on Advanced Automatic Collision Notification and Triage of the Injured Patient. Each model was used to assign the probability of severe injury (defined as MAIS 3+ or ISS > 15 injury) to a subset of NASS-CDS cases based on crash attributes. Subsequently, actual AIS and ISS levels were compared with the predicted probability of injury to determine the extent to which the seriously injured had corresponding probabilities exceeding the 10% and 20% risk thresholds. Models were developed using an 80% sample of NASS-CDS data from 2002 to 2012 and evaluations were performed using the remaining 20% of cases from the same period.

Objectives: The objectives of this study are to (1) characterize the population of crashes meeting the Centers for Disease Control and Prevention (CDC)-recommended 20% risk of Injury Severity Score (ISS) > 15 injury and (2) explore the positive and negative effects of an advanced automatic crash notification (AACN) system whose threshold for high-risk indications is 10% versus 20%.

Original languageEnglish (US)
Pages (from-to)S134-S140
JournalTraffic Injury Prevention
StatePublished - Sep 1 2014


  • AACN
  • EMS
  • injury risk
  • post crash


Dive into the research topics of 'The Benefits and Tradeoffs for Varied High-Severity Injury Risk Thresholds for Advanced Automatic Crash Notification Systems'. Together they form a unique fingerprint.

Cite this