TY - JOUR
T1 - Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells.
AU - Fecci, Peter E.
AU - Sweeney, Alison E.
AU - Grossi, Peter M.
AU - Nair, Smita K.
AU - Learn, Christopher A.
AU - Mitchell, Duane A.
AU - Cui, Xiuyu
AU - Cummings, Thomas J.
AU - Bigner, Darell D.
AU - Gilboa, Eli
AU - Sampson, John H.
N1 - Copyright:
This record is sourced from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine
PY - 2006/7/15
Y1 - 2006/7/15
N2 - PURPOSE: Elevated proportions of regulatory T cells (T(reg)) are present in patients with a variety of cancers, including malignant glioma, yet recapitulative murine models are wanting. We therefore examined T(regs) in mice bearing malignant glioma and evaluated anti-CD25 as an immunotherapeutic adjunct. EXPERIMENTAL DESIGN: CD4+CD25+Foxp3+GITR+ T(regs) were quantified in the peripheral blood, spleens, cervical lymph nodes, and bone marrow of mice bearing malignant glioma. The capacities for systemic anti-CD25 therapy to deplete T(regs), enhance lymphocyte function, and generate antiglioma CTL responses were assessed. Lastly, survival and experimental allergic encephalitis risks were evaluated when anti-CD25 was combined with a dendritic cell-based immunization targeting shared tumor and central nervous system antigens. RESULTS: Similar to patients with malignant glioma, glioma-bearing mice show a CD4 lymphopenia. Additionally, CD4+CD25+Foxp3+GITR+ T(regs) represent an increased fraction of the remaining peripheral blood CD4+ T cells, despite themselves being reduced in number. Similar trends are observed in cervical lymph node and spleen, but not in bone marrow. Systemic anti-CD25 administration hinders detection of CD25+ cells but fails to completely eliminate T(regs), reducing their number only moderately, yet eliminating their suppressive function. This elimination of T(reg) function permits enhanced lymphocyte proliferative and IFN-gamma responses and up to 80% specific lysis of glioma cell targets in vitro. When combined with dendritic cell immunization, anti-CD25 elicits tumor rejection in 100% of challenged mice without precipitating experimental allergic encephalitis. CONCLUSIONS: Systemic anti-CD25 administration does not entirely eliminate T(regs) but does prevent T(reg) function. This leads to safe enhancement of tumor immunity in a murine glioma model that recapitulates the tumor-induced changes to the CD4 and T(reg) compartments seen in patients with malignant glioma.
AB - PURPOSE: Elevated proportions of regulatory T cells (T(reg)) are present in patients with a variety of cancers, including malignant glioma, yet recapitulative murine models are wanting. We therefore examined T(regs) in mice bearing malignant glioma and evaluated anti-CD25 as an immunotherapeutic adjunct. EXPERIMENTAL DESIGN: CD4+CD25+Foxp3+GITR+ T(regs) were quantified in the peripheral blood, spleens, cervical lymph nodes, and bone marrow of mice bearing malignant glioma. The capacities for systemic anti-CD25 therapy to deplete T(regs), enhance lymphocyte function, and generate antiglioma CTL responses were assessed. Lastly, survival and experimental allergic encephalitis risks were evaluated when anti-CD25 was combined with a dendritic cell-based immunization targeting shared tumor and central nervous system antigens. RESULTS: Similar to patients with malignant glioma, glioma-bearing mice show a CD4 lymphopenia. Additionally, CD4+CD25+Foxp3+GITR+ T(regs) represent an increased fraction of the remaining peripheral blood CD4+ T cells, despite themselves being reduced in number. Similar trends are observed in cervical lymph node and spleen, but not in bone marrow. Systemic anti-CD25 administration hinders detection of CD25+ cells but fails to completely eliminate T(regs), reducing their number only moderately, yet eliminating their suppressive function. This elimination of T(reg) function permits enhanced lymphocyte proliferative and IFN-gamma responses and up to 80% specific lysis of glioma cell targets in vitro. When combined with dendritic cell immunization, anti-CD25 elicits tumor rejection in 100% of challenged mice without precipitating experimental allergic encephalitis. CONCLUSIONS: Systemic anti-CD25 administration does not entirely eliminate T(regs) but does prevent T(reg) function. This leads to safe enhancement of tumor immunity in a murine glioma model that recapitulates the tumor-induced changes to the CD4 and T(reg) compartments seen in patients with malignant glioma.
UR - http://www.scopus.com/inward/record.url?scp=33845885624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845885624&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-06-0053
DO - 10.1158/1078-0432.CCR-06-0053
M3 - Article
C2 - 16857805
AN - SCOPUS:33845885624
VL - 12
SP - 4294
EP - 4305
JO - Clinical Cancer Research
JF - Clinical Cancer Research
SN - 1078-0432
IS - 14 Pt 1
ER -