Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs

Vincenzo Balzani, Alberto Credi, Gunter Mattersteig, Owen A. Matthews, Francisco Raymo, J. Fraser Stoddart, Margherita Venturi, Andrew J P White, David J. Williams

Research output: Contribution to journalArticle

242 Citations (Scopus)

Abstract

An acyclic polyether 1a, incorporating a central tetrathiafulvalene (TTF) electron donor unit and two 4-tert-butylphenoxy groups at its termini, has been synthesized. Two macrocyclic polyethers containing two different electron donors, namely a TTF unit with, in one case, a 1,4-dioxybenzene ring (2a), and, in the other case (2b), a 1,5-dioxynaphthalene ring system, have also been synthesized. These two macrocyclic polyethers have been mechanically interlocked in kinetically controlled template-directed syntheses with cyclobis(paraquat-p-phenylene) cyclophane (34+) to afford the [2]catenanes 2a/34+ and 2b/34+, respectively. X-ray crystallography reveals that the [2]catenane 2b/34+ has the TTF unit of 2b located inside the cavity of 34+. The spectroscopic (UV/vis and 1H NMR) and electrochemical properties of compounds 1a, 2a, 2b, 2a/34+, and 2b/34+ and of the [2]pseudorotaxane 1a·34+ were investigated. The absorption and emission properties of the mono- and dioxidized forms of the TTF unit in these various species have also been studied. The results obtained in acetonitrile solution can be summarized as follows. (a) While TTF2+ exhibits a strong fluorescence, no emission can be observed for the TTF2+ units contained in the polyethers and in their pseudorotaxanes and catenanes. (b) A donor-acceptor absorption band is observed upon two-electron oxidation of the TTF unit in the macrocyclic polyethers 2a and 2b. (c) The spontaneous self-assembly of 1a and 34+ to give the [2]pseudorotaxane 1a·34+ is strongly favored (K(ass.) = 5 x 105 L mol-1) but slow (at 296 K, k = 11.3 L mol-1 s-1 and ΔG* = 15.9 kcal mol-1) because of the steric hindrance associated with the bulky end groups of 1a. (d) In the pseudorotaxane 1a.34+, the reversible displacement of the cyclophane from the TTF unit in the threadlike substrate occurs on oxidation/reduction of its electroactive components. (e) Switching between the two translational isomers of the catenanes 2a/34+ and 25/34+ occurs by cyclic oxidation and reduction of the TTF unit contained in 2a and in 2b, respectively. (f) Addition of o-chloroanil to the pseudorotaxane 1a·34+ and to the catenanes 2a/34+ and 2b/34+ causes the displacement of the TTF unit from the cavity of the cyclophane 34+ because of the formation of an adduct between the TTF unit and o-chloroanil.

Original languageEnglish
Pages (from-to)1924-1936
Number of pages13
JournalJournal of Organic Chemistry
Volume65
Issue number7
DOIs
StatePublished - Apr 7 2000

Fingerprint

Catenanes
Rotaxanes
Polyethers
Electrons
Oxidation-Reduction
tetrathiafulvalene
Oxidation
Paraquat
X ray crystallography
Electrochemical properties
Isomers
Self assembly
Absorption spectra

ASJC Scopus subject areas

  • Organic Chemistry

Cite this

Balzani, V., Credi, A., Mattersteig, G., Matthews, O. A., Raymo, F., Stoddart, J. F., ... Williams, D. J. (2000). Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs. Journal of Organic Chemistry, 65(7), 1924-1936. https://doi.org/10.1021/jo991781t

Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs. / Balzani, Vincenzo; Credi, Alberto; Mattersteig, Gunter; Matthews, Owen A.; Raymo, Francisco; Stoddart, J. Fraser; Venturi, Margherita; White, Andrew J P; Williams, David J.

In: Journal of Organic Chemistry, Vol. 65, No. 7, 07.04.2000, p. 1924-1936.

Research output: Contribution to journalArticle

Balzani, V, Credi, A, Mattersteig, G, Matthews, OA, Raymo, F, Stoddart, JF, Venturi, M, White, AJP & Williams, DJ 2000, 'Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs', Journal of Organic Chemistry, vol. 65, no. 7, pp. 1924-1936. https://doi.org/10.1021/jo991781t
Balzani, Vincenzo ; Credi, Alberto ; Mattersteig, Gunter ; Matthews, Owen A. ; Raymo, Francisco ; Stoddart, J. Fraser ; Venturi, Margherita ; White, Andrew J P ; Williams, David J. / Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs. In: Journal of Organic Chemistry. 2000 ; Vol. 65, No. 7. pp. 1924-1936.
@article{35cc331936894495957a88283f2a2ff6,
title = "Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs",
abstract = "An acyclic polyether 1a, incorporating a central tetrathiafulvalene (TTF) electron donor unit and two 4-tert-butylphenoxy groups at its termini, has been synthesized. Two macrocyclic polyethers containing two different electron donors, namely a TTF unit with, in one case, a 1,4-dioxybenzene ring (2a), and, in the other case (2b), a 1,5-dioxynaphthalene ring system, have also been synthesized. These two macrocyclic polyethers have been mechanically interlocked in kinetically controlled template-directed syntheses with cyclobis(paraquat-p-phenylene) cyclophane (34+) to afford the [2]catenanes 2a/34+ and 2b/34+, respectively. X-ray crystallography reveals that the [2]catenane 2b/34+ has the TTF unit of 2b located inside the cavity of 34+. The spectroscopic (UV/vis and 1H NMR) and electrochemical properties of compounds 1a, 2a, 2b, 2a/34+, and 2b/34+ and of the [2]pseudorotaxane 1a·34+ were investigated. The absorption and emission properties of the mono- and dioxidized forms of the TTF unit in these various species have also been studied. The results obtained in acetonitrile solution can be summarized as follows. (a) While TTF2+ exhibits a strong fluorescence, no emission can be observed for the TTF2+ units contained in the polyethers and in their pseudorotaxanes and catenanes. (b) A donor-acceptor absorption band is observed upon two-electron oxidation of the TTF unit in the macrocyclic polyethers 2a and 2b. (c) The spontaneous self-assembly of 1a and 34+ to give the [2]pseudorotaxane 1a·34+ is strongly favored (K(ass.) = 5 x 105 L mol-1) but slow (at 296 K, k = 11.3 L mol-1 s-1 and ΔG* = 15.9 kcal mol-1) because of the steric hindrance associated with the bulky end groups of 1a. (d) In the pseudorotaxane 1a.34+, the reversible displacement of the cyclophane from the TTF unit in the threadlike substrate occurs on oxidation/reduction of its electroactive components. (e) Switching between the two translational isomers of the catenanes 2a/34+ and 25/34+ occurs by cyclic oxidation and reduction of the TTF unit contained in 2a and in 2b, respectively. (f) Addition of o-chloroanil to the pseudorotaxane 1a·34+ and to the catenanes 2a/34+ and 2b/34+ causes the displacement of the TTF unit from the cavity of the cyclophane 34+ because of the formation of an adduct between the TTF unit and o-chloroanil.",
author = "Vincenzo Balzani and Alberto Credi and Gunter Mattersteig and Matthews, {Owen A.} and Francisco Raymo and Stoddart, {J. Fraser} and Margherita Venturi and White, {Andrew J P} and Williams, {David J.}",
year = "2000",
month = "4",
day = "7",
doi = "10.1021/jo991781t",
language = "English",
volume = "65",
pages = "1924--1936",
journal = "Journal of Organic Chemistry",
issn = "0022-3263",
publisher = "American Chemical Society",
number = "7",

}

TY - JOUR

T1 - Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs

AU - Balzani, Vincenzo

AU - Credi, Alberto

AU - Mattersteig, Gunter

AU - Matthews, Owen A.

AU - Raymo, Francisco

AU - Stoddart, J. Fraser

AU - Venturi, Margherita

AU - White, Andrew J P

AU - Williams, David J.

PY - 2000/4/7

Y1 - 2000/4/7

N2 - An acyclic polyether 1a, incorporating a central tetrathiafulvalene (TTF) electron donor unit and two 4-tert-butylphenoxy groups at its termini, has been synthesized. Two macrocyclic polyethers containing two different electron donors, namely a TTF unit with, in one case, a 1,4-dioxybenzene ring (2a), and, in the other case (2b), a 1,5-dioxynaphthalene ring system, have also been synthesized. These two macrocyclic polyethers have been mechanically interlocked in kinetically controlled template-directed syntheses with cyclobis(paraquat-p-phenylene) cyclophane (34+) to afford the [2]catenanes 2a/34+ and 2b/34+, respectively. X-ray crystallography reveals that the [2]catenane 2b/34+ has the TTF unit of 2b located inside the cavity of 34+. The spectroscopic (UV/vis and 1H NMR) and electrochemical properties of compounds 1a, 2a, 2b, 2a/34+, and 2b/34+ and of the [2]pseudorotaxane 1a·34+ were investigated. The absorption and emission properties of the mono- and dioxidized forms of the TTF unit in these various species have also been studied. The results obtained in acetonitrile solution can be summarized as follows. (a) While TTF2+ exhibits a strong fluorescence, no emission can be observed for the TTF2+ units contained in the polyethers and in their pseudorotaxanes and catenanes. (b) A donor-acceptor absorption band is observed upon two-electron oxidation of the TTF unit in the macrocyclic polyethers 2a and 2b. (c) The spontaneous self-assembly of 1a and 34+ to give the [2]pseudorotaxane 1a·34+ is strongly favored (K(ass.) = 5 x 105 L mol-1) but slow (at 296 K, k = 11.3 L mol-1 s-1 and ΔG* = 15.9 kcal mol-1) because of the steric hindrance associated with the bulky end groups of 1a. (d) In the pseudorotaxane 1a.34+, the reversible displacement of the cyclophane from the TTF unit in the threadlike substrate occurs on oxidation/reduction of its electroactive components. (e) Switching between the two translational isomers of the catenanes 2a/34+ and 25/34+ occurs by cyclic oxidation and reduction of the TTF unit contained in 2a and in 2b, respectively. (f) Addition of o-chloroanil to the pseudorotaxane 1a·34+ and to the catenanes 2a/34+ and 2b/34+ causes the displacement of the TTF unit from the cavity of the cyclophane 34+ because of the formation of an adduct between the TTF unit and o-chloroanil.

AB - An acyclic polyether 1a, incorporating a central tetrathiafulvalene (TTF) electron donor unit and two 4-tert-butylphenoxy groups at its termini, has been synthesized. Two macrocyclic polyethers containing two different electron donors, namely a TTF unit with, in one case, a 1,4-dioxybenzene ring (2a), and, in the other case (2b), a 1,5-dioxynaphthalene ring system, have also been synthesized. These two macrocyclic polyethers have been mechanically interlocked in kinetically controlled template-directed syntheses with cyclobis(paraquat-p-phenylene) cyclophane (34+) to afford the [2]catenanes 2a/34+ and 2b/34+, respectively. X-ray crystallography reveals that the [2]catenane 2b/34+ has the TTF unit of 2b located inside the cavity of 34+. The spectroscopic (UV/vis and 1H NMR) and electrochemical properties of compounds 1a, 2a, 2b, 2a/34+, and 2b/34+ and of the [2]pseudorotaxane 1a·34+ were investigated. The absorption and emission properties of the mono- and dioxidized forms of the TTF unit in these various species have also been studied. The results obtained in acetonitrile solution can be summarized as follows. (a) While TTF2+ exhibits a strong fluorescence, no emission can be observed for the TTF2+ units contained in the polyethers and in their pseudorotaxanes and catenanes. (b) A donor-acceptor absorption band is observed upon two-electron oxidation of the TTF unit in the macrocyclic polyethers 2a and 2b. (c) The spontaneous self-assembly of 1a and 34+ to give the [2]pseudorotaxane 1a·34+ is strongly favored (K(ass.) = 5 x 105 L mol-1) but slow (at 296 K, k = 11.3 L mol-1 s-1 and ΔG* = 15.9 kcal mol-1) because of the steric hindrance associated with the bulky end groups of 1a. (d) In the pseudorotaxane 1a.34+, the reversible displacement of the cyclophane from the TTF unit in the threadlike substrate occurs on oxidation/reduction of its electroactive components. (e) Switching between the two translational isomers of the catenanes 2a/34+ and 25/34+ occurs by cyclic oxidation and reduction of the TTF unit contained in 2a and in 2b, respectively. (f) Addition of o-chloroanil to the pseudorotaxane 1a·34+ and to the catenanes 2a/34+ and 2b/34+ causes the displacement of the TTF unit from the cavity of the cyclophane 34+ because of the formation of an adduct between the TTF unit and o-chloroanil.

UR - http://www.scopus.com/inward/record.url?scp=0034616406&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034616406&partnerID=8YFLogxK

U2 - 10.1021/jo991781t

DO - 10.1021/jo991781t

M3 - Article

AN - SCOPUS:0034616406

VL - 65

SP - 1924

EP - 1936

JO - Journal of Organic Chemistry

JF - Journal of Organic Chemistry

SN - 0022-3263

IS - 7

ER -