TY - JOUR
T1 - Substance P protects spiral ganglion neurons from apoptosis via PKC-Ca 2+-MAPK/ERK pathways
AU - Lallemend, François
AU - Lefebvre, P. P.
AU - Hans, G.
AU - Rigo, J. M.
AU - Van De Water, T. R.
AU - Moonen, G.
AU - Malgrange, B.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2003/10
Y1 - 2003/10
N2 - In the current study, we have investigated the ability of substance P (SP) to protect 3-day-old (P3) rat spiral ganglion neurons (SGNs) from trophic factor deprivation (TFD)-induced cell death. The presence of SP high affinity neurokinin-1 receptor (NK1) transcripts was detected in the spiral ganglion and the NK1 protein localized to SGNs both ex vivo and in vitro. Treatment with SP increased cytoplasmic Ca2+ in SGNs, further arguing for the presence of functional NK1 on these neurons. Both SP and the agonist [Sar 9,Met(O2)11]-SP significantly decreased SGN cell death induced by TFD, with no effect on neurite outgrowth. The survival promoting effect of SP was blocked by the NK1 antagonist, WIN51708. Both pan-caspase inhibitor BOC-D-FMK and SP treatments markedly reduced activation of caspases and DNA fragmentation in trophic factor deprived-neurons. The neuroprotective action of SP was antagonised by specific inhibitors of second messengers, including 1.2.bis-(O-aminophenoxy)-ethane-N,N,N′,N′ -tetraacetic acid (BAPTA-AM) to chelate cytosolic Ca2+, the protein kinase C (PKC) inhibitors bisindolylmaleimide I, Gö6976 and LY333531 and the MAPK/ERK inhibitor U0126. In contrast, nifedipine, a specific inhibitor of L-type Ca2+ channel, and LY294002, a phosphatidylinositol-3-OH kinase (PI3K) inhibitor, had no effect on SP trophic support of SGNs. Moreover, activation of endogenous PKC by 4β-phorbol 12-myristate 13-acetate (PMA) also reduced the loss of trophic factor-deprived SGNs. Thus, NK1 expressed by SGNs transmit a survival-promoting regulatory signal during TFD-induced SGN cell death via pathways involving PKC activation, Ca2+ signalling and MAPK/ERK activation, which can be accounted for by an inhibition of caspase activation.
AB - In the current study, we have investigated the ability of substance P (SP) to protect 3-day-old (P3) rat spiral ganglion neurons (SGNs) from trophic factor deprivation (TFD)-induced cell death. The presence of SP high affinity neurokinin-1 receptor (NK1) transcripts was detected in the spiral ganglion and the NK1 protein localized to SGNs both ex vivo and in vitro. Treatment with SP increased cytoplasmic Ca2+ in SGNs, further arguing for the presence of functional NK1 on these neurons. Both SP and the agonist [Sar 9,Met(O2)11]-SP significantly decreased SGN cell death induced by TFD, with no effect on neurite outgrowth. The survival promoting effect of SP was blocked by the NK1 antagonist, WIN51708. Both pan-caspase inhibitor BOC-D-FMK and SP treatments markedly reduced activation of caspases and DNA fragmentation in trophic factor deprived-neurons. The neuroprotective action of SP was antagonised by specific inhibitors of second messengers, including 1.2.bis-(O-aminophenoxy)-ethane-N,N,N′,N′ -tetraacetic acid (BAPTA-AM) to chelate cytosolic Ca2+, the protein kinase C (PKC) inhibitors bisindolylmaleimide I, Gö6976 and LY333531 and the MAPK/ERK inhibitor U0126. In contrast, nifedipine, a specific inhibitor of L-type Ca2+ channel, and LY294002, a phosphatidylinositol-3-OH kinase (PI3K) inhibitor, had no effect on SP trophic support of SGNs. Moreover, activation of endogenous PKC by 4β-phorbol 12-myristate 13-acetate (PMA) also reduced the loss of trophic factor-deprived SGNs. Thus, NK1 expressed by SGNs transmit a survival-promoting regulatory signal during TFD-induced SGN cell death via pathways involving PKC activation, Ca2+ signalling and MAPK/ERK activation, which can be accounted for by an inhibition of caspase activation.
KW - Apoptosis
KW - Neuroprotection
KW - NK1
KW - Spiral ganglion neurons
KW - Substance P
UR - http://www.scopus.com/inward/record.url?scp=0141884369&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0141884369&partnerID=8YFLogxK
U2 - 10.1046/j.1471-4159.2003.02014.x
DO - 10.1046/j.1471-4159.2003.02014.x
M3 - Article
C2 - 14511128
AN - SCOPUS:0141884369
VL - 87
SP - 508
EP - 521
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
SN - 0022-3042
IS - 2
ER -