Sublethal mechanisms of Pb and Zn toxicity to the purple sea urchin (Strongylocentrotus purpuratus) during early development

Margaret S. Tellis, Mariana M. Lauer, Sunita Nadella, Adalto Bianchini, Chris M. Wood

Research output: Contribution to journalArticle

25 Scopus citations

Abstract

In order to understand sublethal mechanisms of lead (Pb) and zinc (Zn) toxicity, developing sea urchins were exposed continuously from 3h post-fertilization (eggs) to 96h (pluteus larvae) to 55 (±2.4)μgPb/L or 117 (±11)μgZn/L, representing ~70% of the EC50 for normal 72h development. Growth, unidirectional Ca uptake rates, whole body ion concentrations (Na, K, Ca, Mg), Ca2+ ATPase activity, and metal bioaccumulation were monitored every 12h over this period. Pb exhibited marked bioaccumulation whereas Zn was well-regulated, and both metals had little effect on growth, measured as larval dry weight, or on Na, K, or Mg concentrations. Unidirectional Ca uptake rates (measured by 45Ca incorporation) were severely inhibited by both metals, resulting in lower levels of whole body Ca accumulation. The greatest disruption occurred at gastrulation. Ca2+ ATPase activity was also significantly inhibited by Zn but not by Pb. Interestingly, embryos exposed to Pb showed some capacity for recovery, as Ca2+ATPase activities increased, Ca uptake rates returned to normal intermittently, and whole body Ca levels were restored to control values by 72-96h of development. This did not occur with Zn exposure. Both Pb and Zn rendered their toxic effects through disruption of Ca homeostasis, though likely through different proximate mechanisms. We recommend studying the toxicity of these contaminants periodically throughout development as an effective way to detect sublethal effects, which may not be displayed at the traditional toxicity test endpoint of 72h.

Original languageEnglish (US)
Pages (from-to)220-229
Number of pages10
JournalAquatic Toxicology
Volume146
DOIs
StatePublished - Jan 2014

Keywords

  • Calcification
  • Echinoderm
  • Embryonic development
  • Lead
  • Spicule
  • Toxicity
  • Zinc

ASJC Scopus subject areas

  • Aquatic Science
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Sublethal mechanisms of Pb and Zn toxicity to the purple sea urchin (Strongylocentrotus purpuratus) during early development'. Together they form a unique fingerprint.

  • Cite this