Strong species-Environment feedback shapes plant community assembly along environmental gradients

Jiang Jiang, Donald L. DeAngelis

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. Inthis modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increaselocal species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly.

Original languageEnglish (US)
Pages (from-to)4119-4128
Number of pages10
JournalEcology and Evolution
Issue number12
StatePublished - Oct 2013
Externally publishedYes


  • Alternative states
  • Coexistence
  • Community assembly
  • Ecosystem engineer
  • Limitingsimilarity
  • Neutral model
  • Niche
  • Species zonation

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Nature and Landscape Conservation


Dive into the research topics of 'Strong species-Environment feedback shapes plant community assembly along environmental gradients'. Together they form a unique fingerprint.

Cite this