Spatial population expansion promotes the evolution of cooperation in an experimental prisoner's dilemma

J. David Van Dyken, Melanie J.I. Müller, Keenan M.L. MacK, Michael M. Desai

Research output: Contribution to journalArticlepeer-review

79 Scopus citations


Cooperation is ubiquitous in nature, but explaining its existence remains a central interdisciplinary challenge [1-3]. Cooperation is most difficult to explain in the Prisoner's Dilemma game, where cooperators always lose in direct competition with defectors despite increasing mean fitness [1, 4, 5]. Here we demonstrate how spatial population expansion, a widespread natural phenomenon [6-11], promotes the evolution of cooperation. We engineer an experimental Prisoner's Dilemma game in the budding yeast Saccharomyces cerevisiae to show that, despite losing to defectors in nonexpanding conditions, cooperators increase in frequency in spatially expanding populations. Fluorescently labeled colonies show genetic demixing [8] of cooperators and defectors, followed by increase in cooperator frequency as cooperator sectors overtake neighboring defector sectors. Together with lattice-based spatial simulations, our results suggest that spatial population expansion drives the evolution of cooperation by (1) increasing positive genetic assortment at population frontiers and (2) selecting for phenotypes maximizing local deme productivity. Spatial expansion thus creates a selective force whereby cooperator-enriched demes overtake neighboring defector-enriched demes in a "survival of the fastest." We conclude that colony growth alone can promote cooperation and prevent defection in microbes. Our results extend to other species with spatially restricted dispersal undergoing range expansion, including pathogens, invasive species, and humans.

Original languageEnglish (US)
Pages (from-to)919-923
Number of pages5
JournalCurrent Biology
Issue number10
StatePublished - May 20 2013
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)


Dive into the research topics of 'Spatial population expansion promotes the evolution of cooperation in an experimental prisoner's dilemma'. Together they form a unique fingerprint.

Cite this