Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus

Ian Hentall, A. Pinzon, Brian R Noga

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

The monoamine neurotransmitter serotonin is released from spinal terminals of nucleus raphe magnus (NRM) neurons and important in sensory and motor control, but its pattern of release has remained unclear. Serotonin was measured by the high-resolution method of fast cyclic voltammetry (2 Hz) with carbon-fiber microelectrodes in lumbar segments (L3-L6) of halothane-anesthetized rats during electrical stimulation of the NRM. Because sites of serotonin release are often histologically remote from membrane transporters and receptors, rapid emergence into aggregate extracellular space was expected. Increased monoamine oxidation currents were found in 94% of trials of 50-Hz, 20-s NRM stimulation across all laminae. The estimated peak serotonin concentration averaged 37.8 nM (maximum 287 nM), and was greater in dorsal and ventral laminae (I-III and VIII-IX) than in intermediate laminae (IV-VI). When measured near NRM-evoked changes, basal monoamine levels (relative to dorsal white matter) were highest in intermediate laminae, while changes in norepinephrine level produced by locus ceruleus (LC) stimulation were lowest in laminae II/III and VII. The NRM-evoked monoamine peak was linearly proportional to stimulus frequency (10-100 Hz). The peak often occurred before the stimulus ended (mean 15.6 s at 50 Hz, range 4-35 s) regardless of frequency, suggesting that release per impulse was constant during the rise but fell later. The latency from stimulus onset to electrochemical signal detection (mean 4.2 s, range 1-23 s) was inversely correlated with peak amplitude and directly correlated with time-to-peak. Quantitative modeling suggested that shorter latencies mostly reflected the time below detection threshold (5-10 nM), so that extrasynaptic serotonin was significantly elevated well within 1 s. Longer latencies (>5 s), which were confined to intermediate laminae, appeared mainly to be due to diffusion from distant sources. In conclusion, except possibly in intermediate laminae, serotonergic volume transmission is a significant mode of spinal control by the NRM.

Original languageEnglish
Pages (from-to)893-903
Number of pages11
JournalNeuroscience
Volume142
Issue number3
DOIs
StatePublished - Oct 27 2006

Fingerprint

Electric Stimulation
Serotonin
Spinal Cord
Substantia Gelatinosa
Locus Coeruleus
Membrane Transport Proteins
Extracellular Space
Microelectrodes
Halothane
Neurotransmitter Agents
Nucleus Raphe Magnus
Norepinephrine
Neurons
Spinal Cord Dorsal Horn

Keywords

  • fast cyclic voltammetry
  • monoamines
  • raphe
  • serotonin
  • spinal cord
  • volume transmission

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus. / Hentall, Ian; Pinzon, A.; Noga, Brian R.

In: Neuroscience, Vol. 142, No. 3, 27.10.2006, p. 893-903.

Research output: Contribution to journalArticle

@article{b6c737f1a3344ba8b85bd95f2319b3e0,
title = "Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus",
abstract = "The monoamine neurotransmitter serotonin is released from spinal terminals of nucleus raphe magnus (NRM) neurons and important in sensory and motor control, but its pattern of release has remained unclear. Serotonin was measured by the high-resolution method of fast cyclic voltammetry (2 Hz) with carbon-fiber microelectrodes in lumbar segments (L3-L6) of halothane-anesthetized rats during electrical stimulation of the NRM. Because sites of serotonin release are often histologically remote from membrane transporters and receptors, rapid emergence into aggregate extracellular space was expected. Increased monoamine oxidation currents were found in 94{\%} of trials of 50-Hz, 20-s NRM stimulation across all laminae. The estimated peak serotonin concentration averaged 37.8 nM (maximum 287 nM), and was greater in dorsal and ventral laminae (I-III and VIII-IX) than in intermediate laminae (IV-VI). When measured near NRM-evoked changes, basal monoamine levels (relative to dorsal white matter) were highest in intermediate laminae, while changes in norepinephrine level produced by locus ceruleus (LC) stimulation were lowest in laminae II/III and VII. The NRM-evoked monoamine peak was linearly proportional to stimulus frequency (10-100 Hz). The peak often occurred before the stimulus ended (mean 15.6 s at 50 Hz, range 4-35 s) regardless of frequency, suggesting that release per impulse was constant during the rise but fell later. The latency from stimulus onset to electrochemical signal detection (mean 4.2 s, range 1-23 s) was inversely correlated with peak amplitude and directly correlated with time-to-peak. Quantitative modeling suggested that shorter latencies mostly reflected the time below detection threshold (5-10 nM), so that extrasynaptic serotonin was significantly elevated well within 1 s. Longer latencies (>5 s), which were confined to intermediate laminae, appeared mainly to be due to diffusion from distant sources. In conclusion, except possibly in intermediate laminae, serotonergic volume transmission is a significant mode of spinal control by the NRM.",
keywords = "fast cyclic voltammetry, monoamines, raphe, serotonin, spinal cord, volume transmission",
author = "Ian Hentall and A. Pinzon and Noga, {Brian R}",
year = "2006",
month = "10",
day = "27",
doi = "10.1016/j.neuroscience.2006.06.038",
language = "English",
volume = "142",
pages = "893--903",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "3",

}

TY - JOUR

T1 - Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus

AU - Hentall, Ian

AU - Pinzon, A.

AU - Noga, Brian R

PY - 2006/10/27

Y1 - 2006/10/27

N2 - The monoamine neurotransmitter serotonin is released from spinal terminals of nucleus raphe magnus (NRM) neurons and important in sensory and motor control, but its pattern of release has remained unclear. Serotonin was measured by the high-resolution method of fast cyclic voltammetry (2 Hz) with carbon-fiber microelectrodes in lumbar segments (L3-L6) of halothane-anesthetized rats during electrical stimulation of the NRM. Because sites of serotonin release are often histologically remote from membrane transporters and receptors, rapid emergence into aggregate extracellular space was expected. Increased monoamine oxidation currents were found in 94% of trials of 50-Hz, 20-s NRM stimulation across all laminae. The estimated peak serotonin concentration averaged 37.8 nM (maximum 287 nM), and was greater in dorsal and ventral laminae (I-III and VIII-IX) than in intermediate laminae (IV-VI). When measured near NRM-evoked changes, basal monoamine levels (relative to dorsal white matter) were highest in intermediate laminae, while changes in norepinephrine level produced by locus ceruleus (LC) stimulation were lowest in laminae II/III and VII. The NRM-evoked monoamine peak was linearly proportional to stimulus frequency (10-100 Hz). The peak often occurred before the stimulus ended (mean 15.6 s at 50 Hz, range 4-35 s) regardless of frequency, suggesting that release per impulse was constant during the rise but fell later. The latency from stimulus onset to electrochemical signal detection (mean 4.2 s, range 1-23 s) was inversely correlated with peak amplitude and directly correlated with time-to-peak. Quantitative modeling suggested that shorter latencies mostly reflected the time below detection threshold (5-10 nM), so that extrasynaptic serotonin was significantly elevated well within 1 s. Longer latencies (>5 s), which were confined to intermediate laminae, appeared mainly to be due to diffusion from distant sources. In conclusion, except possibly in intermediate laminae, serotonergic volume transmission is a significant mode of spinal control by the NRM.

AB - The monoamine neurotransmitter serotonin is released from spinal terminals of nucleus raphe magnus (NRM) neurons and important in sensory and motor control, but its pattern of release has remained unclear. Serotonin was measured by the high-resolution method of fast cyclic voltammetry (2 Hz) with carbon-fiber microelectrodes in lumbar segments (L3-L6) of halothane-anesthetized rats during electrical stimulation of the NRM. Because sites of serotonin release are often histologically remote from membrane transporters and receptors, rapid emergence into aggregate extracellular space was expected. Increased monoamine oxidation currents were found in 94% of trials of 50-Hz, 20-s NRM stimulation across all laminae. The estimated peak serotonin concentration averaged 37.8 nM (maximum 287 nM), and was greater in dorsal and ventral laminae (I-III and VIII-IX) than in intermediate laminae (IV-VI). When measured near NRM-evoked changes, basal monoamine levels (relative to dorsal white matter) were highest in intermediate laminae, while changes in norepinephrine level produced by locus ceruleus (LC) stimulation were lowest in laminae II/III and VII. The NRM-evoked monoamine peak was linearly proportional to stimulus frequency (10-100 Hz). The peak often occurred before the stimulus ended (mean 15.6 s at 50 Hz, range 4-35 s) regardless of frequency, suggesting that release per impulse was constant during the rise but fell later. The latency from stimulus onset to electrochemical signal detection (mean 4.2 s, range 1-23 s) was inversely correlated with peak amplitude and directly correlated with time-to-peak. Quantitative modeling suggested that shorter latencies mostly reflected the time below detection threshold (5-10 nM), so that extrasynaptic serotonin was significantly elevated well within 1 s. Longer latencies (>5 s), which were confined to intermediate laminae, appeared mainly to be due to diffusion from distant sources. In conclusion, except possibly in intermediate laminae, serotonergic volume transmission is a significant mode of spinal control by the NRM.

KW - fast cyclic voltammetry

KW - monoamines

KW - raphe

KW - serotonin

KW - spinal cord

KW - volume transmission

UR - http://www.scopus.com/inward/record.url?scp=33749451451&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749451451&partnerID=8YFLogxK

U2 - 10.1016/j.neuroscience.2006.06.038

DO - 10.1016/j.neuroscience.2006.06.038

M3 - Article

C2 - 16890366

AN - SCOPUS:33749451451

VL - 142

SP - 893

EP - 903

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 3

ER -