SMPDL3b modulates insulin receptor signaling in diabetic kidney disease

A. Mitrofanova, S. K. Mallela, G. M. Ducasa, T. H. Yoo, E. Rosenfeld-Gur, I. D. Zelnik, J. Molina, J. Varona Santos, M. Ge, A. Sloan, J. J. Kim, C. Pedigo, J. Bryn, I. Volosenco, Christian H Faul, Youssef Zeidan, C. Garcia Hernandez, A. J. Mendez, I. Leibiger, G. W. BurkeA. H. Futerman, L. Barisoni, Y. Ishimoto, R. Inagi, S. Merscher, A. Fornoni

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


Sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is a lipid raft enzyme that regulates plasma membrane (PM) fluidity. Here we report that SMPDL3b excess, as observed in podocytes in diabetic kidney disease (DKD), impairs insulin receptor isoform B-dependent pro-survival insulin signaling by interfering with insulin receptor isoforms binding to caveolin-1 in the PM. SMPDL3b excess affects the production of active sphingolipids resulting in decreased ceramide-1-phosphate (C1P) content as observed in human podocytes in vitro and in kidney cortexes of diabetic db/db mice in vivo. Podocyte-specific Smpdl3b deficiency in db/db mice is sufficient to restore kidney cortex C1P content and to protect from DKD. Exogenous administration of C1P restores IR signaling in vitro and prevents established DKD progression in vivo. Taken together, we identify SMPDL3b as a modulator of insulin signaling and demonstrate that supplementation with exogenous C1P may represent a lipid therapeutic strategy to treat diabetic complications such as DKD.

Original languageEnglish (US)
Article number2692
JournalNature communications
Issue number1
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'SMPDL3b modulates insulin receptor signaling in diabetic kidney disease'. Together they form a unique fingerprint.

Cite this