Shortwave radiative impacts from aerosol effects on marine shallow cumuli

Paquita Zuidema, Huiwen Xue, Graham Feingold

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three-dimensional radiative transfer (3DRT) effects alter the fluxes by 10%-20% from values calculated using the independent column approximation for these simulations. The first (Twomey) aerosol indirect effect is dominant but the decreased cloud fraction reduces the magnitude of the shortwave cloud forcing substantially. The 3DRT effects slightly decrease the sensitivity of the cloud albedo to changes in droplet size under an overhead sun for the two ranges of cloud liquid water paths examined, but not strongly so. A popular two-stream radiative transfer approximation to the cloud susceptibility overestimates the more directly calculated values for the low liquid-water-path clouds within pristine aerosol conditions by a factor of 2 despite performing well otherwise, suggesting caution in its application to the cloud albedos within broken cloud fields. An evaluation of the influence of cloud susceptibility and cloud fraction changes to a "domain" area-weighted cloud susceptibility found that the domain cloud albedo is more likely to increase under aerosol loading at intermediate aerosol concentrations than under the most pristine conditions, contrary to traditional expectations. The second simulation (cumulus penetrating into stratus) is characterized by higher cloud fractions and more precipitation. This case has two regimes: a clean, precipitating regime where cloud fraction increases with increasing aerosol, and a more polluted regime where cloud fraction decreases with increasing aerosol. For this case the domain-mean cloud albedo increases steadily with aerosol loading under clean conditions, but increases only slightly after the cloud coverage decreases. Three-dimensional radiative transfer effects are mostly negligible for this case. Both sets of simulations suggest that aerosol-induced cloud fraction changes must be considered in tandem with the Twomey effect for clouds of small dimensions when assessing the net radiative impact, because both effects are drop size dependent and radiatively significant.

Original languageEnglish (US)
Pages (from-to)1979-1990
Number of pages12
JournalJournal of the Atmospheric Sciences
Volume65
Issue number6
DOIs
StatePublished - Jun 2008

Fingerprint

cumulus
aerosol
radiative transfer
albedo
effect
droplet
simulation
stratus
liquid

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

Shortwave radiative impacts from aerosol effects on marine shallow cumuli. / Zuidema, Paquita; Xue, Huiwen; Feingold, Graham.

In: Journal of the Atmospheric Sciences, Vol. 65, No. 6, 06.2008, p. 1979-1990.

Research output: Contribution to journalArticle

@article{39fb0293154c49a19b5d1c5388e3dd02,
title = "Shortwave radiative impacts from aerosol effects on marine shallow cumuli",
abstract = "The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three-dimensional radiative transfer (3DRT) effects alter the fluxes by 10{\%}-20{\%} from values calculated using the independent column approximation for these simulations. The first (Twomey) aerosol indirect effect is dominant but the decreased cloud fraction reduces the magnitude of the shortwave cloud forcing substantially. The 3DRT effects slightly decrease the sensitivity of the cloud albedo to changes in droplet size under an overhead sun for the two ranges of cloud liquid water paths examined, but not strongly so. A popular two-stream radiative transfer approximation to the cloud susceptibility overestimates the more directly calculated values for the low liquid-water-path clouds within pristine aerosol conditions by a factor of 2 despite performing well otherwise, suggesting caution in its application to the cloud albedos within broken cloud fields. An evaluation of the influence of cloud susceptibility and cloud fraction changes to a {"}domain{"} area-weighted cloud susceptibility found that the domain cloud albedo is more likely to increase under aerosol loading at intermediate aerosol concentrations than under the most pristine conditions, contrary to traditional expectations. The second simulation (cumulus penetrating into stratus) is characterized by higher cloud fractions and more precipitation. This case has two regimes: a clean, precipitating regime where cloud fraction increases with increasing aerosol, and a more polluted regime where cloud fraction decreases with increasing aerosol. For this case the domain-mean cloud albedo increases steadily with aerosol loading under clean conditions, but increases only slightly after the cloud coverage decreases. Three-dimensional radiative transfer effects are mostly negligible for this case. Both sets of simulations suggest that aerosol-induced cloud fraction changes must be considered in tandem with the Twomey effect for clouds of small dimensions when assessing the net radiative impact, because both effects are drop size dependent and radiatively significant.",
author = "Paquita Zuidema and Huiwen Xue and Graham Feingold",
year = "2008",
month = "6",
doi = "10.1175/2007JAS2447.1",
language = "English (US)",
volume = "65",
pages = "1979--1990",
journal = "Journals of the Atmospheric Sciences",
issn = "0022-4928",
publisher = "American Meteorological Society",
number = "6",

}

TY - JOUR

T1 - Shortwave radiative impacts from aerosol effects on marine shallow cumuli

AU - Zuidema, Paquita

AU - Xue, Huiwen

AU - Feingold, Graham

PY - 2008/6

Y1 - 2008/6

N2 - The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three-dimensional radiative transfer (3DRT) effects alter the fluxes by 10%-20% from values calculated using the independent column approximation for these simulations. The first (Twomey) aerosol indirect effect is dominant but the decreased cloud fraction reduces the magnitude of the shortwave cloud forcing substantially. The 3DRT effects slightly decrease the sensitivity of the cloud albedo to changes in droplet size under an overhead sun for the two ranges of cloud liquid water paths examined, but not strongly so. A popular two-stream radiative transfer approximation to the cloud susceptibility overestimates the more directly calculated values for the low liquid-water-path clouds within pristine aerosol conditions by a factor of 2 despite performing well otherwise, suggesting caution in its application to the cloud albedos within broken cloud fields. An evaluation of the influence of cloud susceptibility and cloud fraction changes to a "domain" area-weighted cloud susceptibility found that the domain cloud albedo is more likely to increase under aerosol loading at intermediate aerosol concentrations than under the most pristine conditions, contrary to traditional expectations. The second simulation (cumulus penetrating into stratus) is characterized by higher cloud fractions and more precipitation. This case has two regimes: a clean, precipitating regime where cloud fraction increases with increasing aerosol, and a more polluted regime where cloud fraction decreases with increasing aerosol. For this case the domain-mean cloud albedo increases steadily with aerosol loading under clean conditions, but increases only slightly after the cloud coverage decreases. Three-dimensional radiative transfer effects are mostly negligible for this case. Both sets of simulations suggest that aerosol-induced cloud fraction changes must be considered in tandem with the Twomey effect for clouds of small dimensions when assessing the net radiative impact, because both effects are drop size dependent and radiatively significant.

AB - The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three-dimensional radiative transfer (3DRT) effects alter the fluxes by 10%-20% from values calculated using the independent column approximation for these simulations. The first (Twomey) aerosol indirect effect is dominant but the decreased cloud fraction reduces the magnitude of the shortwave cloud forcing substantially. The 3DRT effects slightly decrease the sensitivity of the cloud albedo to changes in droplet size under an overhead sun for the two ranges of cloud liquid water paths examined, but not strongly so. A popular two-stream radiative transfer approximation to the cloud susceptibility overestimates the more directly calculated values for the low liquid-water-path clouds within pristine aerosol conditions by a factor of 2 despite performing well otherwise, suggesting caution in its application to the cloud albedos within broken cloud fields. An evaluation of the influence of cloud susceptibility and cloud fraction changes to a "domain" area-weighted cloud susceptibility found that the domain cloud albedo is more likely to increase under aerosol loading at intermediate aerosol concentrations than under the most pristine conditions, contrary to traditional expectations. The second simulation (cumulus penetrating into stratus) is characterized by higher cloud fractions and more precipitation. This case has two regimes: a clean, precipitating regime where cloud fraction increases with increasing aerosol, and a more polluted regime where cloud fraction decreases with increasing aerosol. For this case the domain-mean cloud albedo increases steadily with aerosol loading under clean conditions, but increases only slightly after the cloud coverage decreases. Three-dimensional radiative transfer effects are mostly negligible for this case. Both sets of simulations suggest that aerosol-induced cloud fraction changes must be considered in tandem with the Twomey effect for clouds of small dimensions when assessing the net radiative impact, because both effects are drop size dependent and radiatively significant.

UR - http://www.scopus.com/inward/record.url?scp=45849105990&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=45849105990&partnerID=8YFLogxK

U2 - 10.1175/2007JAS2447.1

DO - 10.1175/2007JAS2447.1

M3 - Article

AN - SCOPUS:45849105990

VL - 65

SP - 1979

EP - 1990

JO - Journals of the Atmospheric Sciences

JF - Journals of the Atmospheric Sciences

SN - 0022-4928

IS - 6

ER -