Selective Disruption of the Blood–Brain Barrier by Zika Virus

Ana Rachel Leda, Luc Bertrand, Ibolya Edit Andras, Nazira El-Hage, Madhavan Nair, Michal Toborek

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


The blood–brain barrier (BBB) selectively regulates the cellular exchange of macromolecules between the circulation and the central nervous system (CNS). Here, we hypothesize that Zika virus (ZIKV) infects the brain via a disrupted BBB and altered expression of tight junction (TJ) proteins, which are structural components of the BBB. To assess this hypothesis, in vitro and in vivo studies were performed using three different strains of ZIKV: Honduras (ZIKV-H), Puerto Rico (ZIKV-PR), and Uganda (ZIKV-U). Primary human brain microvascular endothelial cells (BMECs) were productively infected by all studied ZIKV strains at MOI 0.01, and were analyzed by plaque assay, immunofluorescence for NS1 protein, and qRT-PCR at 2 and 6 days post-infection (dpi). Compared to mock-infected controls, expression level of ZO-1 was significantly upregulated in ZIKV-H-infected BMECs, while occludin and claudin-5 levels were significantly downregulated in BMECs infected by all three studied viral strains. Interestingly, BMEC permeability was not disturbed by ZIKV infection, even in the presence of a very high viral load (MOI 10). All studied ZIKV strains productively infected wild-type C57BL/J mice after intravenous infection with 107 PFU. Viral load was detected in the plasma, spleen, and brain from 1 to 8 dpi. Peak brain infection was observed at 2 dpi; therefore, TJ protein expression was assessed at this time point. Claudin-5 was significantly downregulated in ZIKV-U-infected animals and the BBB integrity was significantly disturbed in ZIKV-H-infected animals. Our results suggest that ZIKV penetrates the brain parenchyma early after infection with concurrent alterations of TJ protein expression and disruption of the BBB permeability in a strain-dependent manner.

Original languageEnglish (US)
Article number2158
JournalFrontiers in Microbiology
StatePublished - Sep 18 2019


  • Zika virus
  • blood–brain barrier
  • endothelial cells
  • neuroinfection
  • tight junctions

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)


Dive into the research topics of 'Selective Disruption of the Blood–Brain Barrier by Zika Virus'. Together they form a unique fingerprint.

Cite this