### Abstract

We conducted a study on a recently proposed model in which an odd number of agents are competing to be in the minority. In the model, the agents have one strategy in hand which is to follow the most recent history. Each agent is also assigned a value p, which is the probability that an agent will follow the trend. Evolution is introduced through the modification of the value of p when the performance of an agent becomes unsatisfactory. We present numerical results for the distribution of p values in the population as well as the average duration between modifications at a given p for different values of the parameters in the model. Agents who either always follow the trend or always act opposite to the trend, tend to out-perform the cautious agents. In this study we also point out the difference between the present model and a slightly modified model in which a strategy is randomly assigned to every agent initially.

Original language | English (US) |
---|---|

Pages (from-to) | 451-458 |

Number of pages | 8 |

Journal | Physica A: Statistical Mechanics and its Applications |

Volume | 288 |

Issue number | 1-4 |

DOIs | |

State | Published - Dec 15 2000 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Mathematical Physics
- Statistical and Nonlinear Physics

### Cite this

*Physica A: Statistical Mechanics and its Applications*,

*288*(1-4), 451-458. https://doi.org/10.1016/S0378-4371(00)00443-X

**Segregation in a competing and evolving population.** / Hui, P. M.; Lo, T. S.; Johnson, Neil F.

Research output: Contribution to journal › Article

*Physica A: Statistical Mechanics and its Applications*, vol. 288, no. 1-4, pp. 451-458. https://doi.org/10.1016/S0378-4371(00)00443-X

}

TY - JOUR

T1 - Segregation in a competing and evolving population

AU - Hui, P. M.

AU - Lo, T. S.

AU - Johnson, Neil F

PY - 2000/12/15

Y1 - 2000/12/15

N2 - We conducted a study on a recently proposed model in which an odd number of agents are competing to be in the minority. In the model, the agents have one strategy in hand which is to follow the most recent history. Each agent is also assigned a value p, which is the probability that an agent will follow the trend. Evolution is introduced through the modification of the value of p when the performance of an agent becomes unsatisfactory. We present numerical results for the distribution of p values in the population as well as the average duration between modifications at a given p for different values of the parameters in the model. Agents who either always follow the trend or always act opposite to the trend, tend to out-perform the cautious agents. In this study we also point out the difference between the present model and a slightly modified model in which a strategy is randomly assigned to every agent initially.

AB - We conducted a study on a recently proposed model in which an odd number of agents are competing to be in the minority. In the model, the agents have one strategy in hand which is to follow the most recent history. Each agent is also assigned a value p, which is the probability that an agent will follow the trend. Evolution is introduced through the modification of the value of p when the performance of an agent becomes unsatisfactory. We present numerical results for the distribution of p values in the population as well as the average duration between modifications at a given p for different values of the parameters in the model. Agents who either always follow the trend or always act opposite to the trend, tend to out-perform the cautious agents. In this study we also point out the difference between the present model and a slightly modified model in which a strategy is randomly assigned to every agent initially.

UR - http://www.scopus.com/inward/record.url?scp=0034512130&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034512130&partnerID=8YFLogxK

U2 - 10.1016/S0378-4371(00)00443-X

DO - 10.1016/S0378-4371(00)00443-X

M3 - Article

AN - SCOPUS:0034512130

VL - 288

SP - 451

EP - 458

JO - Physica A: Statistical Mechanics and its Applications

JF - Physica A: Statistical Mechanics and its Applications

SN - 0378-4371

IS - 1-4

ER -