TY - JOUR
T1 - Saliency, switching, attention and control
T2 - a network model of insula function.
AU - Menon, Vinod
AU - Uddin, Lucina Q.
N1 - Funding Information:
We thank Dr. Bud Craig and two anonymous reviewers for their insightful feedback and suggestions for improving the manuscript, and Dr. Miriam Rosenberg-Lee for useful comments on an early draft. This work was supported by grants from the National Institutes of Health (NS058899, HD047520, HD059205, HD057610 to VM), the National Science Foundation (BCS/DRL 0449927 to VM), and by a Mosbacher Postdoctoral Fellowship and Award Number K01MH092288 from the National Institute of Mental Health to LQU.
PY - 2010/6
Y1 - 2010/6
N2 - The insula is a brain structure implicated in disparate cognitive, affective, and regulatory functions, including interoceptive awareness, emotional responses, and empathic processes. While classically considered a limbic region, recent evidence from network analysis suggests a critical role for the insula, particularly the anterior division, in high-level cognitive control and attentional processes. The crucial insight and view we present here is of the anterior insula as an integral hub in mediating dynamic interactions between other large-scale brain networks involved in externally oriented attention and internally oriented or self-related cognition. The model we present postulates that the insula is sensitive to salient events, and that its core function is to mark such events for additional processing and initiate appropriate control signals. The anterior insula and the anterior cingulate cortex form a "salience network" that functions to segregate the most relevant among internal and extrapersonal stimuli in order to guide behavior. Within the framework of our network model, the disparate functions ascribed to the insula can be conceptualized by a few basic mechanisms: (1) bottom-up detection of salient events, (2) switching between other large-scale networks to facilitate access to attention and working memory resources when a salient event is detected, (3) interaction of the anterior and posterior insula to modulate autonomic reactivity to salient stimuli, and (4) strong functional coupling with the anterior cingulate cortex that facilitates rapid access to the motor system. In this manner, with the insula as its integral hub, the salience network assists target brain regions in the generation of appropriate behavioral responses to salient stimuli. We suggest that this framework provides a parsimonious account of insula function in neurotypical adults, and may provide novel insights into the neural basis of disorders of affective and social cognition.
AB - The insula is a brain structure implicated in disparate cognitive, affective, and regulatory functions, including interoceptive awareness, emotional responses, and empathic processes. While classically considered a limbic region, recent evidence from network analysis suggests a critical role for the insula, particularly the anterior division, in high-level cognitive control and attentional processes. The crucial insight and view we present here is of the anterior insula as an integral hub in mediating dynamic interactions between other large-scale brain networks involved in externally oriented attention and internally oriented or self-related cognition. The model we present postulates that the insula is sensitive to salient events, and that its core function is to mark such events for additional processing and initiate appropriate control signals. The anterior insula and the anterior cingulate cortex form a "salience network" that functions to segregate the most relevant among internal and extrapersonal stimuli in order to guide behavior. Within the framework of our network model, the disparate functions ascribed to the insula can be conceptualized by a few basic mechanisms: (1) bottom-up detection of salient events, (2) switching between other large-scale networks to facilitate access to attention and working memory resources when a salient event is detected, (3) interaction of the anterior and posterior insula to modulate autonomic reactivity to salient stimuli, and (4) strong functional coupling with the anterior cingulate cortex that facilitates rapid access to the motor system. In this manner, with the insula as its integral hub, the salience network assists target brain regions in the generation of appropriate behavioral responses to salient stimuli. We suggest that this framework provides a parsimonious account of insula function in neurotypical adults, and may provide novel insights into the neural basis of disorders of affective and social cognition.
UR - http://www.scopus.com/inward/record.url?scp=85027950875&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027950875&partnerID=8YFLogxK
U2 - 10.1007/s00429-010-0262-0
DO - 10.1007/s00429-010-0262-0
M3 - Review article
C2 - 20512370
AN - SCOPUS:85027950875
VL - 214
SP - 655
EP - 667
JO - Brain Structure and Function
JF - Brain Structure and Function
SN - 1863-2653
IS - 5-6
ER -