TY - JOUR
T1 - Ribonuclease T
T2 - New exoribonuclease possibly involved in end-turnover of tRNA
AU - Deutscher, M. P.
AU - Marlor, C. W.
AU - Zaniewski, R.
PY - 1984
Y1 - 1984
N2 - Examination of double mutants lacking one of the exoribonucleases, RNase II, RNase D, RNase BN, or RNase R, and also devoid of tRNA nucleotidyltransferase has suggested that none of these RNases participates in the end-turnover of tRNA. This prompted a search for and identification of a new exoribonuclease, termed TNase T. RNase T could be detected in mutant Escherichia coli strains lacking as many as three of the known exoribonucleases, and it could be separated from each of the four previously described RNases. RNase T is optimally active at pH 8-9 and requires a divalent cation for activity. The enzyme is sensitive to ionic strengths > 50 mM and is rapidly inactivated by heating at 45° C. Its preferred substrate is tRNA-C-C-[14C]A, with much less activity shown against tRNA-C-C. RNase T is an exoribonuclease that initiates attack at the 3' hydroxyl terminus of tRNA and releases AMP in a random mode of hydrolysis. The possible involvement of RNase T in end-turnover of tRNA and in RNA metabolism in general are discussed.
AB - Examination of double mutants lacking one of the exoribonucleases, RNase II, RNase D, RNase BN, or RNase R, and also devoid of tRNA nucleotidyltransferase has suggested that none of these RNases participates in the end-turnover of tRNA. This prompted a search for and identification of a new exoribonuclease, termed TNase T. RNase T could be detected in mutant Escherichia coli strains lacking as many as three of the known exoribonucleases, and it could be separated from each of the four previously described RNases. RNase T is optimally active at pH 8-9 and requires a divalent cation for activity. The enzyme is sensitive to ionic strengths > 50 mM and is rapidly inactivated by heating at 45° C. Its preferred substrate is tRNA-C-C-[14C]A, with much less activity shown against tRNA-C-C. RNase T is an exoribonuclease that initiates attack at the 3' hydroxyl terminus of tRNA and releases AMP in a random mode of hydrolysis. The possible involvement of RNase T in end-turnover of tRNA and in RNA metabolism in general are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0021169997&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021169997&partnerID=8YFLogxK
U2 - 10.1073/pnas.81.14.4290
DO - 10.1073/pnas.81.14.4290
M3 - Article
C2 - 6379642
AN - SCOPUS:0021169997
VL - 81
SP - 4290
EP - 4293
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 14 I
ER -