TY - JOUR
T1 - Retroviral-mediated transfer of the human acid sphingomyelinase cDNA
T2 - Correction of the metabolic defect in cultured Niemann-Pick disease cells
AU - Suchi, Mariko
AU - Dinur, Tama
AU - Desnick, Robert J.
AU - Gatt, Shimon
AU - Pereira, Lygia
AU - Gilboa, Eli
AU - Schuchman, Edward H.
PY - 1992
Y1 - 1992
N2 - Types A and B Niemann-Pick disease (NPD) result from inherited deficiencies of the lysosomal hydrolase, acid sphingomyelinase (ASM; sphingomyelin cholinephosphohydrolase, EC 3.1.4.12). To evaluate the feasibility of somatic gene therapy for the treatment of these disorders, retroviral-mediated gene transfer was used to introduce the full-length ASM cDNA into cultured fibroblasts from two unrelated type A NPD patients. The ASM activities in these cells were <4% of mean normal levels, and, consequently, they accumulated ≈3-fold elevated levels of sphingomyelin. After retroviral-mediated transfer of the ASM cDNA, ASM activities in the NPD cells increased to levels up to 16-fold those found in normal fibroblasts. In addition, the sphingomyelin content was reduced to normal levels, indicating that the vector-encoded enzyme was properly targeted to lysosomes, where it was enzymatically active and able to degrade the accumulated substrate. In situ cell-loading studies also were undertaken to evaluate the effects of retroviral-mediated gene transfer on the pathology of NPD fibroblasts. When a pyrene derivative of sphingomyelin was introduced into the lysosomes of cultured fibroblasts from a type A NPD patient by using apolipoprotein E-mediated endocytosis, only ≈6% of the delivered substrate was degraded. In contrast, normal cells and NPD cells transduced (i.e., "corrected") by retroviral-mediated gene transfer could degrade ≈80% of the delivered sphingomyelin. These results provided further evidence that retroviral-mediated gene transfer may be used to correct the pathology of NPD cells. Cell-loading studies were also used to develop a selection system for discriminating between NPD cells and those transduced by retroviral-mediated gene transfer. This selection scheme was based on the fluorescence emission of intact NPD cells, which, when loaded with pyrene-labeled sphingomyelin, was 3- to 5-fold that of normal or transduced cells. As a consequence, the NPD and transduced cells could be efficiently sorted by flow cytometry with a fluorescence-activated cell sorter. In addition, the NPD cells could be selectively killed by photosensitization after irradiation with a long-wavelength UV light. These results should permit direct selection of ASM-expressing cells after retroviral-mediated gene transfer without the need to preselect for a cotransferred marker gene. (.
AB - Types A and B Niemann-Pick disease (NPD) result from inherited deficiencies of the lysosomal hydrolase, acid sphingomyelinase (ASM; sphingomyelin cholinephosphohydrolase, EC 3.1.4.12). To evaluate the feasibility of somatic gene therapy for the treatment of these disorders, retroviral-mediated gene transfer was used to introduce the full-length ASM cDNA into cultured fibroblasts from two unrelated type A NPD patients. The ASM activities in these cells were <4% of mean normal levels, and, consequently, they accumulated ≈3-fold elevated levels of sphingomyelin. After retroviral-mediated transfer of the ASM cDNA, ASM activities in the NPD cells increased to levels up to 16-fold those found in normal fibroblasts. In addition, the sphingomyelin content was reduced to normal levels, indicating that the vector-encoded enzyme was properly targeted to lysosomes, where it was enzymatically active and able to degrade the accumulated substrate. In situ cell-loading studies also were undertaken to evaluate the effects of retroviral-mediated gene transfer on the pathology of NPD fibroblasts. When a pyrene derivative of sphingomyelin was introduced into the lysosomes of cultured fibroblasts from a type A NPD patient by using apolipoprotein E-mediated endocytosis, only ≈6% of the delivered substrate was degraded. In contrast, normal cells and NPD cells transduced (i.e., "corrected") by retroviral-mediated gene transfer could degrade ≈80% of the delivered sphingomyelin. These results provided further evidence that retroviral-mediated gene transfer may be used to correct the pathology of NPD cells. Cell-loading studies were also used to develop a selection system for discriminating between NPD cells and those transduced by retroviral-mediated gene transfer. This selection scheme was based on the fluorescence emission of intact NPD cells, which, when loaded with pyrene-labeled sphingomyelin, was 3- to 5-fold that of normal or transduced cells. As a consequence, the NPD and transduced cells could be efficiently sorted by flow cytometry with a fluorescence-activated cell sorter. In addition, the NPD cells could be selectively killed by photosensitization after irradiation with a long-wavelength UV light. These results should permit direct selection of ASM-expressing cells after retroviral-mediated gene transfer without the need to preselect for a cotransferred marker gene. (.
KW - Lysosomal storage disease
KW - Photosensitized cell selection
KW - Somatic gene therapy
UR - http://www.scopus.com/inward/record.url?scp=0026607916&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026607916&partnerID=8YFLogxK
U2 - 10.1073/pnas.89.8.3227
DO - 10.1073/pnas.89.8.3227
M3 - Article
C2 - 1565614
AN - SCOPUS:0026607916
VL - 89
SP - 3227
EP - 3231
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 8
ER -