Reprogramming of human somatic cells to pluripotency with defined factors

In Hyun Park, Rui Zhao, Jason A. West, Akiko Yabuuchi, Hongguang Huo, Tan A. Ince, Paul H. Lerou, M. William Lensch, George Q. Daley

Research output: Contribution to journalArticle

2187 Scopus citations

Abstract

Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.

Original languageEnglish (US)
Pages (from-to)141-146
Number of pages6
JournalNature
Volume451
Issue number7175
DOIs
StatePublished - Jan 10 2008
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • General

Cite this

Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., & Daley, G. Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141-146. https://doi.org/10.1038/nature06534