Repeatability of CBCT radiomic features and their correlation with CT radiomic features for prostate cancer

Rodrigo Delgadillo, Benjamin O. Spieler, John C. Ford, Deukwoo Kwon, Fei Yang, Matthew Studenski, Kyle R. Padgett, Matthew C. Abramowitz, Alan Dal Pra, Radka Stoyanova, Alan Pollack, Nesrin Dogan

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Purpose: Radiomic features of cone-beam CT (CBCT) images have potential as biomarkers to predict treatment response and prognosis for patients of prostate cancer. Previous studies of radiomic feature analysis for prostate cancer were assessed in a variety of imaging modalities, including MRI, PET, and CT, but usually limited to a pretreatment setting. However, CBCT images may provide an opportunity to capture early morphological changes to the tumor during treatment that could lead to timely treatment adaptation. This work investigated the quality of CBCT-based radiomic features and their relationship with reconstruction methods applied to the CBCT projections and the preprocessing methods used in feature extraction. Moreover, CBCT features were correlated with planning CT (pCT) features to further assess the viability of CBCT radiomic features. Methods: The quality of 42 CBCT-based radiomic features was assessed according to their repeatability and reproducibility. Repeatability was quantified by correlating radiomic features between 20 CBCT scans that also had repeated scans within 15 minutes. Reproducibility was quantified by correlating radiomic features between the planning CT (pCT) and the first fraction CBCT for 20 patients. Concordance correlation coefficients (CCC) of radiomic features were used to estimate the repeatability and reproducibility of radiomic features. The same patient dataset was assessed using different reconstruction methods applied to the CBCT projections. CBCT images were generated using 18 reconstruction methods using iterative (iCBCT) and standard (sCBCT) reconstructions, three convolution filters, and five noise suppression filters. Eighteen preprocessing settings were also considered. Results: Overall, CBCT radiomic features were more repeatable than reproducible. Five radiomic features are repeatable in > 97% of the reconstruction and preprocessing methods, and come from the gray-level size zone matrix (GLSZM), neighborhood gray-tone difference matrix (NGTDM), and gray-level-run length matrix (GLRLM) radiomic feature classes. These radiomic features were reproducible in > 9.8% of the reconstruction and preprocessing methods. Noise suppression and convolution filter smoothing increased radiomic features repeatability, but decreased reproducibility. The top-repeatable iCBCT method (iCBCT-Sharp-VeryHigh) is more repeatable than the top-repeatable sCBCT method (sCBCT-Smooth) in 64% of the radiomic features. Conclusion: Methods for reconstruction and preprocessing that improve CBCT radiomic feature repeatability often decrease reproducibility. The best approach may be to use methods that strike a balance repeatability and reproducibility such as iCBCT-Sharp-VeryLow-1-Lloyd-256 that has 17 repeatable and eight reproducible radiomic features. Previous radiomic studies that only used pCT radiomic features have generated prognostic models of prostate cancer outcome. Since our study indicates that CBCT radiomic features correlated well with a subset of pCT radiomic features, one may expect CBCT radiomics to also generate prognostic models for prostate cancer.

Original languageEnglish (US)
Pages (from-to)2386-2399
Number of pages14
JournalMedical physics
Issue number5
StatePublished - May 2021


  • CT
  • cone-beam CT
  • prostate cancer
  • radiomics
  • radiotherapy

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Repeatability of CBCT radiomic features and their correlation with CT radiomic features for prostate cancer'. Together they form a unique fingerprint.

Cite this