Renal responsiveness to aldosterone during exposure to head-down tilt bedrest.

V. A. Convertino, J. J. Elliott, David Ludwig, C. E. Wade

Research output: Contribution to journalArticle

Abstract

The kidneys represent a fundamental organ system responsible in part for the control of vascular volume. A 10% to 20% reduction in plasma volume is one of the fundamental adaptations during exposure to low gravity environments such as bedrest and space flight. Bedrest-induced hypovolemia has been associated with acute diuresis and natriuresis. Elevated baseline plasma renin activity and aldosterone levels have been observed in human subjects following exposure to head-down tilt and spaceflight without alterations in renal sodium excretion. Further, attempts to restore plasma volume with isotonic fluid drinking or infusion in human subjects exposed to head-down bedrest have failed. One explanation for these observations is that renal distal tubular cells may become less sensitive to aldosterone following exposure to head-down tilt, with a subsequent reduction in renal capacity for sodium retention. We hypothesized that elevated sodium and water excretion observed during prolonged exposure to bedrest and the subsequent inability to restore body fluids by drinking might be reflected, at least in part, by reduced renal tubular responsiveness to aldosterone. If renal tubular responsiveness to aldosterone were reduced with confinement to bedrest, then we would expect measures of renal sodium retention to be reduced when a bolus of aldosterone was administered in head-down tilt (HDT) bedrest compared to a control experimental condition. In order to test this hypothesis, we conducted an investigation in which we administered an acute bolus of aldosterone (stimulus) and measured responses in renal functions that included renal clearances of sodium and free water, sodium/potassium ratio in urine, urine sodium concentration, and total and fractional renal sodium excretion.

Original languageEnglish
JournalJournal of gravitational physiology : a journal of the International Society for Gravitational Physiology
Volume7
Issue number2
StatePublished - Jan 1 2000
Externally publishedYes

Fingerprint

Head-Down Tilt
Bed Rest
Aldosterone
Sodium
Kidney
Space Flight
Plasma Volume
Drinking
Hypogravity
Urine
Natriuresis
Hypovolemia
Water
Diuresis
Body Fluids
Renin
Blood Vessels
Potassium
Head

Cite this

Renal responsiveness to aldosterone during exposure to head-down tilt bedrest. / Convertino, V. A.; Elliott, J. J.; Ludwig, David; Wade, C. E.

In: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology, Vol. 7, No. 2, 01.01.2000.

Research output: Contribution to journalArticle

@article{17f14e009c4e450c94aff3272d42d96f,
title = "Renal responsiveness to aldosterone during exposure to head-down tilt bedrest.",
abstract = "The kidneys represent a fundamental organ system responsible in part for the control of vascular volume. A 10{\%} to 20{\%} reduction in plasma volume is one of the fundamental adaptations during exposure to low gravity environments such as bedrest and space flight. Bedrest-induced hypovolemia has been associated with acute diuresis and natriuresis. Elevated baseline plasma renin activity and aldosterone levels have been observed in human subjects following exposure to head-down tilt and spaceflight without alterations in renal sodium excretion. Further, attempts to restore plasma volume with isotonic fluid drinking or infusion in human subjects exposed to head-down bedrest have failed. One explanation for these observations is that renal distal tubular cells may become less sensitive to aldosterone following exposure to head-down tilt, with a subsequent reduction in renal capacity for sodium retention. We hypothesized that elevated sodium and water excretion observed during prolonged exposure to bedrest and the subsequent inability to restore body fluids by drinking might be reflected, at least in part, by reduced renal tubular responsiveness to aldosterone. If renal tubular responsiveness to aldosterone were reduced with confinement to bedrest, then we would expect measures of renal sodium retention to be reduced when a bolus of aldosterone was administered in head-down tilt (HDT) bedrest compared to a control experimental condition. In order to test this hypothesis, we conducted an investigation in which we administered an acute bolus of aldosterone (stimulus) and measured responses in renal functions that included renal clearances of sodium and free water, sodium/potassium ratio in urine, urine sodium concentration, and total and fractional renal sodium excretion.",
author = "Convertino, {V. A.} and Elliott, {J. J.} and David Ludwig and Wade, {C. E.}",
year = "2000",
month = "1",
day = "1",
language = "English",
volume = "7",
journal = "Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology",
issn = "1077-9248",
publisher = "Galileo Foundation",
number = "2",

}

TY - JOUR

T1 - Renal responsiveness to aldosterone during exposure to head-down tilt bedrest.

AU - Convertino, V. A.

AU - Elliott, J. J.

AU - Ludwig, David

AU - Wade, C. E.

PY - 2000/1/1

Y1 - 2000/1/1

N2 - The kidneys represent a fundamental organ system responsible in part for the control of vascular volume. A 10% to 20% reduction in plasma volume is one of the fundamental adaptations during exposure to low gravity environments such as bedrest and space flight. Bedrest-induced hypovolemia has been associated with acute diuresis and natriuresis. Elevated baseline plasma renin activity and aldosterone levels have been observed in human subjects following exposure to head-down tilt and spaceflight without alterations in renal sodium excretion. Further, attempts to restore plasma volume with isotonic fluid drinking or infusion in human subjects exposed to head-down bedrest have failed. One explanation for these observations is that renal distal tubular cells may become less sensitive to aldosterone following exposure to head-down tilt, with a subsequent reduction in renal capacity for sodium retention. We hypothesized that elevated sodium and water excretion observed during prolonged exposure to bedrest and the subsequent inability to restore body fluids by drinking might be reflected, at least in part, by reduced renal tubular responsiveness to aldosterone. If renal tubular responsiveness to aldosterone were reduced with confinement to bedrest, then we would expect measures of renal sodium retention to be reduced when a bolus of aldosterone was administered in head-down tilt (HDT) bedrest compared to a control experimental condition. In order to test this hypothesis, we conducted an investigation in which we administered an acute bolus of aldosterone (stimulus) and measured responses in renal functions that included renal clearances of sodium and free water, sodium/potassium ratio in urine, urine sodium concentration, and total and fractional renal sodium excretion.

AB - The kidneys represent a fundamental organ system responsible in part for the control of vascular volume. A 10% to 20% reduction in plasma volume is one of the fundamental adaptations during exposure to low gravity environments such as bedrest and space flight. Bedrest-induced hypovolemia has been associated with acute diuresis and natriuresis. Elevated baseline plasma renin activity and aldosterone levels have been observed in human subjects following exposure to head-down tilt and spaceflight without alterations in renal sodium excretion. Further, attempts to restore plasma volume with isotonic fluid drinking or infusion in human subjects exposed to head-down bedrest have failed. One explanation for these observations is that renal distal tubular cells may become less sensitive to aldosterone following exposure to head-down tilt, with a subsequent reduction in renal capacity for sodium retention. We hypothesized that elevated sodium and water excretion observed during prolonged exposure to bedrest and the subsequent inability to restore body fluids by drinking might be reflected, at least in part, by reduced renal tubular responsiveness to aldosterone. If renal tubular responsiveness to aldosterone were reduced with confinement to bedrest, then we would expect measures of renal sodium retention to be reduced when a bolus of aldosterone was administered in head-down tilt (HDT) bedrest compared to a control experimental condition. In order to test this hypothesis, we conducted an investigation in which we administered an acute bolus of aldosterone (stimulus) and measured responses in renal functions that included renal clearances of sodium and free water, sodium/potassium ratio in urine, urine sodium concentration, and total and fractional renal sodium excretion.

UR - http://www.scopus.com/inward/record.url?scp=0037984605&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037984605&partnerID=8YFLogxK

M3 - Article

C2 - 12697514

AN - SCOPUS:0037984605

VL - 7

JO - Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology

JF - Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology

SN - 1077-9248

IS - 2

ER -