TY - JOUR
T1 - Relationships among arteriolar, regional, and whole organ blood flow in cremaster muscle.
AU - Proctor, K. G.
AU - Busija, D. W.
N1 - Copyright:
Medline is the source for the citation and abstract of this record.
PY - 1985/7
Y1 - 1985/7
N2 - The relationship between microvessel and tissue blood flow (BF) was determined with two different techniques during changes in local vasomotor tone in the rat cremaster muscle. Whole organ and regional BF were measured with the radioactive microsphere technique (BFms) and compared with values calculated in individual arterioles (BFc) using the dual-slit cross-correlation technique. In the muscle prepared for microcirculatory observation (i.e., dissected, surgically divided into a flattened sheet, and covered with clear plastic), resting BFms was 43 +/- 3 ml X min-1 X 100 g-1, which was significantly higher than paired BFms in the contralateral undisturbed muscle (24 +/- 7 ml X min-1 X 100 g-1). Over a range in vasomotor tone, regional BFms to the edge of the tissue, which was exposed to the trauma of the surgery, was 56 +/- 7 ml X min-1 X 100 g-1 compared with 38 +/- 5 in the less traumatized center region, a significant difference of 79 +/- 31%. There was no linear relationship between arteriolar BFc and BFms. The correlation was not improved if the factors of vessel size, vasomotor tone, animal size, or muscle size were considered. Changes in arteriolar BFc (y) overestimated changes in total tissue BFms (x) by a factor of 2 (y = 2.01x - 0.6; r = 0.86), but changes in arteriolar BFc were proportional to changes in BFms if only the center region (x) of the tissue was considered (y = 1.08x - 0.1; r = 0.84). The general implication from these results is that factors that influence perfusion heterogeneity, such as surgical trauma, should be carefully considered when correlating macro- and microcirculatory measurements of BF.
AB - The relationship between microvessel and tissue blood flow (BF) was determined with two different techniques during changes in local vasomotor tone in the rat cremaster muscle. Whole organ and regional BF were measured with the radioactive microsphere technique (BFms) and compared with values calculated in individual arterioles (BFc) using the dual-slit cross-correlation technique. In the muscle prepared for microcirculatory observation (i.e., dissected, surgically divided into a flattened sheet, and covered with clear plastic), resting BFms was 43 +/- 3 ml X min-1 X 100 g-1, which was significantly higher than paired BFms in the contralateral undisturbed muscle (24 +/- 7 ml X min-1 X 100 g-1). Over a range in vasomotor tone, regional BFms to the edge of the tissue, which was exposed to the trauma of the surgery, was 56 +/- 7 ml X min-1 X 100 g-1 compared with 38 +/- 5 in the less traumatized center region, a significant difference of 79 +/- 31%. There was no linear relationship between arteriolar BFc and BFms. The correlation was not improved if the factors of vessel size, vasomotor tone, animal size, or muscle size were considered. Changes in arteriolar BFc (y) overestimated changes in total tissue BFms (x) by a factor of 2 (y = 2.01x - 0.6; r = 0.86), but changes in arteriolar BFc were proportional to changes in BFms if only the center region (x) of the tissue was considered (y = 1.08x - 0.1; r = 0.84). The general implication from these results is that factors that influence perfusion heterogeneity, such as surgical trauma, should be carefully considered when correlating macro- and microcirculatory measurements of BF.
UR - http://www.scopus.com/inward/record.url?scp=17544400467&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=17544400467&partnerID=8YFLogxK
M3 - Article
C2 - 4014486
AN - SCOPUS:17544400467
VL - 249
SP - H34-41
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
SN - 0363-6143
IS - 1 Pt 2
ER -