Regulation of CXCR4-mediated invasion by DARPP-32 in gastric cancer cells

Shoumin Zhu, Jun Hong, Manish K. Tripathi, Vikas Sehdev, Abbes Belkhiri, Wael El-Rifai

Research output: Contribution to journalArticle

19 Scopus citations

Abstract

Although Dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32) is overexpressed in twothirds of gastric cancers, its impact on molecular functions has not been fully characterized. In this study, we examined the role of DARPP-32 in gastric cancer cell invasion. Using matrigel-coated Boyden chamber invasion assay,DARPP-32-overexpressingAGScells showed a three-fold increase in invasion relative to the vector control (P < 0.01). We also tested the transendothelial cell invasion as a measure of cell aggressiveness using the impedance-based human umbilical vein endothelial cells invasion assay and obtained similar results (P < 0.001). Western blot analysis indicated that overexpression of DARPP-32 mediated an increase in the membrane-type 1 matrix metalloproteinase (MT1-MMP) and CXCR4 protein levels. Consistent with the role of MT1-MMP in cleaving extracellular matrix proteins initiating the activation of solubleMMPs, we detected a robust increase inMMP-2 activity in DARPP-32- overexpressing cells. The knockdown of endogenousDARPP-32 in theMKN-45 cells reversed these signaling events and decreased cell invasive activity. We tested whether the invasive activity mediated by DARPP-32 might involve sustained signaling via CXCR4-dependent activation of the MT1-MMP/MMP-2 pathway. The small-molecule CXCR4 antagonist (AMD3100) and CXCR4-siRNA blocked DARPP-32-induced cell invasion. We further examined our hypothesis that DARPP-32 could interact with CXCR4 and stabilize its levels following stimulation with its ligand, CXCL12. Using reciprocal coimmunoprecipitation and immunofluorescence experiments, we found thatDARPP-32 andCXCR4 coexist in the same protein complex.DARPP-32 prolonged theCXCR4 protein half-life and reduced ubiquitination of the CXCR4 protein, following treatment with its ligand, CXCL12. In conclusion, these findings show a novel mechanism by which DARPP-32 promotes cell invasion by regulating CXCR4-mediated activation of the MT1-MMP/MMP-2 pathway.

Original languageEnglish (US)
Pages (from-to)86-94
Number of pages9
JournalMolecular Cancer Research
Volume11
Issue number1
DOIs
StatePublished - Jan 1 2013

    Fingerprint

ASJC Scopus subject areas

  • Molecular Biology
  • Oncology
  • Cancer Research

Cite this