Regularity of line configurations

Bruno Benedetti, Michela Di Marca, Matteo Varbaro

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

We show that in arithmetically-Gorenstein line arrangements with only planar singularities, each line intersects the same number of other lines. This number has an algebraic interpretation: it is the Castelnuovo-Mumford regularity of the coordinate ring of the arrangement.We also prove that every (d-1)-dimensional simplicial complex whose 0-th and 1-st homologies are trivial is the nerve complex of a suitable d-dimensional standard graded algebra of depth ≥3. This provides the converse of a recent result by Katzman, Lyubeznik and Zhang.

Original languageEnglish (US)
JournalJournal of Pure and Applied Algebra
DOIs
StateAccepted/In press - Jan 1 2017

    Fingerprint

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this