Refractive power and biometric properties of the nonhuman primate isolated crystalline lens

David Borja, Fabrice Manns, Arthur Ho, Noel M. Ziebarth, Ana Carolina Acosta, Esdras Arrieta-Quintera, Robert C. Augusteyn, Jean Marie Parel

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


PURPOSE. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. METHODS. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. RESULTS. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and _0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). CONCLUSIONS. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.

Original languageEnglish (US)
Pages (from-to)2118-2125
Number of pages8
JournalInvestigative Ophthalmology and Visual Science
Issue number4
StatePublished - Apr 2010

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Refractive power and biometric properties of the nonhuman primate isolated crystalline lens'. Together they form a unique fingerprint.

Cite this