Reducing Core Stability Influences Lower Extremity Biomechanics in Novice Runners

Ajit M.W. Chaudhari, Margaret R. VAN Horn, Scott M. Monfort, Xueliang Pan, James A. Oñate, Thomas M. Best

Research output: Contribution to journalArticle

Abstract

PURPOSE: The role of core stability in running and its influence on injury risk in runners is not well understood. The purpose of this study was to investigate the effect of core stability (and core fatigue) on running mechanics. We hypothesized that decreasing core stability in novice runners would result in altered running mechanics previously associated with increased risk for common lower extremity running injuries. METHODS: Three-dimensional running kinematics and kinetics and seated postural sway on an unstable surface were collected on 25 healthy, novice runners before and after they performed a core stability knockdown protocol (CSKP), designed to temporarily reduce participants' core stability in a single testing session. RESULTS: Linear mixed models demonstrated that the CSKP resulted in an increased peak knee flexion moment (0.51%BW·ht increase, effect size = 0.49, P = 0.021) and a decreased vertical average loading rate (4.5 BW·s decrease, effect size = 0.44, P = 0.037) during running, but no significant changes in peak knee adduction moment, knee adduction impulse, hip adduction moment, hip adduction impulse, or peak vertical ground reaction force (all P > 0.05). Of 25 runners, 20 demonstrated a measurable decrement in their core stability as defined by their seated postural sway center of pressure excursion changing more than the standard error of measurement of 76 mm. CONCLUSIONS: An experimentally induced decrement in core stability in novice runners caused an increased peak knee flexion moment during stance, which has previously been associated with increased patellofemoral contact pressure during running. Therefore, these results demonstrate that insufficient core stability in novice runners may be a risk factor for developing patellofemoral pain. Other results did not support a role of core stability in other common overuse running injuries in this population.

Original languageEnglish (US)
Pages (from-to)1347-1353
Number of pages7
JournalMedicine and science in sports and exercise
Volume52
Issue number6
DOIs
StatePublished - Jun 1 2020
Externally publishedYes

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint Dive into the research topics of 'Reducing Core Stability Influences Lower Extremity Biomechanics in Novice Runners'. Together they form a unique fingerprint.

  • Cite this